

South Tyneside Council

Local Plan Carbon Analysis

Final report Prepared by LUC April 2021

South Tyneside Council

Local Plan Carbon Analysis

Varsion	Statuc	Broparod	Chackad	Approved	- Data
VEISION	Status	Fiepaleu	Checkeu	Approved	Date
1.	Final report	Nick James	Kate Nicholls	Nick James	18.12.2020
		Chris Green			
2.	Updated final report	Nick James	Kate Nicholls	Nick James	26.02.2021
		Chris Green			
3.	Updated final report	Nick James	Kate Nicholls	Nick James	22.04.2021
		Chris Green			

Bristol Edinburgh Glasgow London Manchester

landuse.co.uk

Land Use Consultants Ltd Registered in England

100% recycled paper

Landscape Design Strategic Planning & Assessment
 Registered in England
 Strategic Flaining & Assessment

 Registered number 2549296
 Development Planning

 Registered office:
 Urban Design & Masterplanning

 250 Waterloo Road
 Environmental Impact Assessment

 London SE1 8RD
 Landscape Planning & Assessment
Landscape Management Ecology Historic Environment GIS & Visualisation

Contents

Local Plan Carbon Analysis April 2021

Contents

Chapter 1 Introduction	1
Chapter 2 Methodology	2
Introduction	2
Accessibility to local services	2
Accessibility to public transport and cycle infrastructure	- 3
Journeys to work	3
Sequestration	4
Building performance	4
Chapter 3	
Baseline analysis	8
Introduction	8
Accessibility to local services	8
Accessibility to public transport and cycle infrastructure	9
Journeys to work	18
Journeys to work – actual and potential	18
Summary	18
Chapter 4 Spatial options – carbon assessment	22
Chapter 5	
Reasonable alternative site allocation	
options – carbon assessment	28
Accessibility to local services	28
Accessibility to public transport and cycle infrastructure	29
Journeys to work	38
Journeys to work – actual and potential	38
Summary of Findings	38
Appendix A	

Reasonable alternatives site options: carbon assessment

A-1

Chapter 1 Introduction

1.1 LUC was commissioned by South Tyneside Council in April 2020 to provide technical advice to support preparation of the Council's Local Plan.

1.2 In the light of South Tyneside Council's declaration of a climate emergency in July 2019, and to help address a number of responses to consultation on the Pre-Publication Draft Local Plan (August 2019), this technical support included:

- a review and update of the climate change baseline data set out in the Sustainability Appraisal Scoping Report¹;
- an assessment of the potential carbon emissions associated with spatial options and reasonable alternative options for site allocations; and
- recommendations on the approach required to ensure robustness in assessing climate change/carbon emissions within the SA framework, with reference to findings provided through the carbon audit and reasonable alternatives where necessary.

1.3 This report sets out the results of the assessment of potential carbon emissions associated with spatial options and reasonable alternative site allocation options. The results of the assessment have been used to inform the updated Sustainability Appraisal (SA) of site options together with an updated climate change baseline which has been provided separately. Recommendations have been made to the Council separately in terms of changes that should be made to the SA framework to better address climate change and carbon emissions, and these amendments have been addressed in the updated SA of site options (reported on separately).

1.4 The remainder of the report comprises the following sections:

- Chapter 2: Methodology
- Chapter 3: Baseline analysis
- **Chapter 4:** Spatial options carbon assessment
- Chapter 5: Reasonable alternative site allocation options carbon assessment

1.5 **Appendix A** contains the results of the analysis for each of the reasonable alternative site allocation options.

Chapter 2 Methodology

Introduction

2.1 This section outlines the methodology that was developed in order to compare the relative carbon performance of Local Plan spatial options and reasonable alternative housing and employment site allocation options. It describes the data sources, assumptions and provisos that apply to the analysis. It describes a composite approach based on the analysis of sites' proximity to key services and transport infrastructure combined with an analysis of the number, approximate distance and mode for journeys to work.

Accessibility to local services

2.2 Locating development close to local services should reduce the need to travel and will allow the use of low carbon modes of transport, particularly walking and cycling. Conversely, locating development at a greater distance from local services is likely to result in longer trips and a greater proportion undertaken by motorised modes, particularly car.

2.3 Of course, proximity to a particular local service does not mean that it will always be used in preference to a more distant alternative. However, it does provide a measure of potential for low carbon access to services.

2.4 Accessibility to a selection of local services was analysed and mapped across South Tyneside. The analysis only includes local service provision within the district and does not take account of services in neighbouring authority areas. Accessibility was categorised as follows:

Criterion	Green	Amber	Red
GP surgery / health centres	<= 600m	601-1200m	>1200m
Local centres	<= 300m	301-800m	>800m
Open spaces and sports centres	<= 750m	750-2000m	>2000m

Table 2.1: Proximity to local services

Chapter 2 Methodology Local Plan Carbon Analysis April 2021

Accessibility to public transport and cycle infrastructure

2.5 Locating development close to public transport should make it more likely that people will travel to and from the location by rail or bus, or at least provide people with a choice of transport mode. Developing in locations away from railway stations or bus stops makes it more likely people will travel by private car.

2.6 Of course, the extent to which people chose to use public transport will depend on a number of factors including their trip origins and destinations, the quality of public transport and the relative time and financial costs.

2.7 Similarly, locating development close to cycle infrastructure makes it more likely that people will chose to travel by bicycle, though again this will depend on the nature and distance of the trip and the quality of the wider cycle network and the supporting infrastructure available at the destination (i.e. shower facilities being available at employment sites).

2.8 Accessibility to public transport and cycle routes was analysed and mapped across South Tyneside. The analysis included consideration of bus stops in neighbouring authority areas but only Metro stations and cycle paths located within the district. Accessibility was categorised as follows:

Criterion	Green	Amber	Red
Metro stations	<= 750m	750-2000m	>2000m
Bus stops	<= 450m	451-1,000m	>1,000m
Cycle paths	<= 300m	301-800m	>800m

Table 2.2: Proximity to public transport and cycle paths

Journeys to work

2.9 Journeys to and from work have the potential to make up a significant share of transport-related emissions, particularly where they are made twice a day, five days a week throughout most of the year. Emissions will be influenced by the length of people's journey to work and the mode of transport they use. Long journeys by car will result in higher carbon emissions than short journeys on foot.

2.10 The number of commuters, average distance travelled and mode used is likely to vary spatially across a local authority area, reflecting the spatial characteristics of the district, public transport and road infrastructure, socioeconomic make up of different communities and the characteristics of surrounding areas.

2.11 Data from the 2011 Census² provides insights into travel to work patterns, providing data on the number of trips to and from each Middle Layer Super Output Area (MSOA) and the mode of transport used. This allows an estimate of the distance travelled (midpoint of each MSOA to the midpoint of other MSOAs) and, for each commuter, the carbon emissions based on standard emission factors (see **Table 2.3** below). These factors represent the typical CO2 emissions for different transport modes, measures in grams per passenger kilometre. In turn, this allows the total journey to work emissions, and the average journey to work emissions, to be calculated for each MSOA.

2.12 Emission factors used for different modes were as follows:

Standard CO2 emission factor grams per passenger km							
Foot	0						
Bicycle	0						
Bus, Minibus or Coach	102						
Driving Car or Van	187						
Passenger in Car or Van	93						
Motorcycle, Scooter or Moped	93.9						
Taxi	162						
Train	48						
Underground, Metro or Light Rail	23						
Work from home	0						

Table 2.3: Transport emission factors

Carbon Trust : Conversion factors (2016 update)

Defra : Passenger Transport emission factors (June 2007)

2.13 The results of this analysis can be mapped to provide a spatial comparison of journey to work emissions associated with different parts of South Tyneside.

- 2.14 The following provisos should be borne in mind:
 - The data are some years out of date, describing travel patterns that prevailed nine years ago. In particular, it is possible that the shift to home working that has been accelerated during the Covid-19 pandemic may have resulted in a decrease in the frequency of journeys, particularly for those commuting longer distances.
- The calculations are undertaken at a fairly coarse scale and there are likely to be variations within each of the MSOAs.

²

https://commute.datashine.org.uk/#mode=allflows&direction=both&ms oa=undefined&zoom=11&lon=-1.5876&lat=54.9240

Chapter 2 Methodology Local Plan Carbon Analysis April 2021

- Distances are calculated from the midpoint of one MSOA to the midpoint of another MSOA and may therefore under- or over-estimate the distance actually travelled.
- The commuting patterns and associated emissions are of course associated with existing development and may not apply to new development which may attract people with different socio-economic characteristics and travel patterns. Larger schemes in particular may include provision for public transport, car sharing or an element of mixed use, for example.

2.15 Despite these provisos, the analysis provides a valuable starting point and insight into a potentially significant component of transport emissions in South Tyneside.

Sequestration

2.16 New development can have an impact on carbon sequestered in the vegetation (**Figure 2.1**) and soils (**Figure 2.2**) of previously undeveloped sites. Previously developed sites (**Figure 2.3**³) are likely to have lower levels of sequestered carbon, though remaining buildings or other structures may embody carbon, or involved the release of carbon during the manufacture of building materials and the construction process.

2.17 Much of the undeveloped countryside in South Tyneside comprises a mosaic of improved grassland, arable and a few small areas of rough grassland, with limited woodland cover generally confined to road corridors and field boundaries (see **Figure 2.1**). Intensively farmed land (arable and improved grassland) tends to have relatively low levels of carbon sequestration. Unimproved and rough grassland may store slightly more carbon. It is possible that existing trees and surviving hedgerows could be incorporated into development, minimising the potential loss of carbon stored in vegetation.

2.18 It is also possible for new development to offset some of the losses in sequestration by including new planting on or offsite, as well as conserving or restoring woodland, wetlands and other important carbon stores.

2.19 Accurate estimates of the effects of development on sequestration requires detailed information about individual sites and the proposed development. It has therefore not been addressed in this assessment but should be considered at the level of individual planning applications.

Building performance

2.20 While the energy performance of new buildings is no longer a planning matter, being addressed through building

³ The data shown in this map is taken from the National Housing Federation's brownfield mapping tool.

regulations, it can be assumed that new buildings will have a much greater energy efficiency than the existing building stock. The location of development is only likely to have a minor influence on building energy efficiency, reflecting factors such as solar gain and shelter from prevailing winds, so it has not been factored into this analysis. Chapter 2

Methodology

Local Plan Carbon Analysis April 2021

Contains Ordnance Survey data © Co Corine Land Cover data - 2018

Chapter 2

Methodology

Local Plan Carbon Analysis April 2021

Chapter 2

Methodology

Local Plan Carbon Analysis April 2021

Introduction

3.1 This section sets out the baseline accessibility and journey to work analysis that was used to assess the local plan spatial options (**Chapter 4**) and reasonable alternative site allocation options (**Chapter 5**).

Accessibility to local services

3.2 **Figure 3.1** shows variations in accessibility to GP surgeries and health centres across South Tyneside. The map shows that much of the existing urban area within South Tyneside has good or moderate access to GP surgeries and health centres. The principal exceptions are Whiteleas, East Boldon and Cleadon. Most of the rural part of the district has relatively poor access to GP surgeries and health centres and so new residential development in these areas would require people to travel further to access GP health services. These patterns would change in the event that new development included additional healthcare provision.

3.3 **Figure 3.2** shows variations in accessibility to town centres across South Tyneside. The three centres are all located in the north of the district meaning that, for large parts of the urban area, the town centres lie beyond easy walking distance. The rural areas in the central and southern parts of the district are particularly distant from town centre facilities. People living in central and southern areas will therefore be more dependent on public transport, cycle routes and use of private cars to reach town centres in the district or in neighbouring areas.

3.4 **Figure 3.3** shows variations in accessibility to open spaces and sports centres across South Tyneside. It shows that the entire urban area and rural areas in the centre of the district lie within easy reach of open space. Only the more rural areas in the far south and south west of the district have poor access. This takes no account of the quality or type of open space. New development could also increase provision of open space, or support improvements in quality.

3.5 **Figure 3.4** combines data from **Figures 3.1 to 3.3** to provide an overview of accessibility to local services based on access to health facilities, town centres and open space. It suggests that places with the best access to these local services are located in urban areas in the north of the district. Most of the remaining urban area has moderate access to these local services, though Whiteleas, East Boldon and

Local Plan Carbon Analysis April 2021

Cleadon have poorer access. Much of the rural area in the south and west of the district has poor access to these local services.

Accessibility to public transport and cycle infrastructure

3.6 **Figure 3.5** shows variations in accessibility to Metro stations across South Tyneside. It shows that most of the urban area has good or moderate access to the Metro network. The principal exceptions lie in the east of the district and include Cleadon Park, Marsden and Whitburn. Rural areas in the east and south west of the district also have poorer access to Metro stations. Development in these locations would mean that residents would be more dependent on bus services, cycling and the private car.

3.7 **Figure 3.6** shows variations in accessibility to bus stops across South Tyneside. It shows that almost the whole of the district has good access to bus stops. The principal exceptions include the far south west of the district and open countryside to the south of East and West Boldon and the south east of Cleadon. This analysis does not take account of the frequency of services and whether bus services provide quick and easy access to destinations people wish to reach.

3.8 **Figure 3.7** shows variations in accessibility to cycle paths across South Tyneside. While it concentrates on dedicated cycling infrastructure rather than the wider road network, it indicates that parts of the existing urban area and much of the rural part of the district lie at some distance from cycle paths. There is of course potential for new development to help expand safe cycle routes.

3.9 **Figure 3.8** combines data from **Figures 3.5 to 3.7** to provide an overview of accessibility to low carbon transport. It indicates that areas currently with the greatest access to sustainable travel infrastructure include urban centres in the north of the district (Hebburn, Jarrow, South Shields) together with a corridor extending south from West Harton to Boldon. Areas with poorer access include many rural parts of the district together with Whitburn and the Cleadon Park area.

Local Plan Carbon Analysis April 2021

Local Plan Carbon Analysis April 2021

Figure 3.2: to local centres across South Tyneside

Contains Ordnance Survey data & Crown copyright and database right 2020

Local Plan Carbon Analysis April 2021

Figure 3.3: accessibility to open spaces and sports centres across South Tyneside

Local Plan Carbon Analysis April 2021

Figure 3.4: overview of accessibility to local services

Contains Ordnance Survey data & Crown copyright and database right 2020

Local Plan Carbon Analysis April 2021

Figure 3.5: accessibility to railway stations across South Tyneside

Local Plan Carbon Analysis April 2021

CB:Green_C EB:Green_C LUC 11074_01_012_Fig3-7_Accessibility_Footpath_Oyclepath_09/09/2020 Source: CHS, STC

Local Plan Carbon Analysis April 2021

Figure 3.7: accessibility to cycle paths across South Tyneside

Contains Ordnance Survey data © Crown copyright and database right 2020

Local Plan Carbon Analysis April 2021

Figure 3.8: overview of accessibility to low carbon transport

Local Plan Carbon Analysis April 2021

Journeys to work

3.10 **Figure 3.9** shows variations in the total emissions associated with journeys to work for each MSOA in South Tyneside. Variations are a product of the total number of commuters, the distances they travel and the mode used. Figures represent a single, one way journey.

3.11 The map shows that total emissions from journeys to work are highest for people living in:

- the north east and south east of the district; and
- the west of the district, reflecting flows of workers to Newcastle city centre.

3.12 **Figure 3.10** shows variations in the average emissions (i.e. per commuter) associated with journeys to work for each MSOA in South Tyneside. Variations reflect the average distance travelled by commuters and their mode of transport. Again, figures represent a single, one-way journey. While subject to the provisos outlined in **Chapter 2**, these data provide an indication of the possible travel to work emissions that could result from development in different parts of South Tyneside.

3.13 The map shows that areas in the east and south of the district, together with parts of Hebburn, tend to have the highest emission levels per commuter. Much of the central part of South Tyneside has lower average commuter emissions, reflecting the combination of a more local labour market (fewer people travelling to neighbouring authority areas) and/or the use of less polluting modes of transport.

Journeys to work – actual and potential

3.14 **Figure 3.11** combines accessibility to Metro stations with the journey to work data (average emissions per commuter) to identify those locations where there is good access to rail and lower commuter emissions and, conversely, those locations with poor access to rail and high commuter emissions).

3.15 As might be expected from the above descriptions, the potential for lowest journey to work emissions is greatest close to Metro stations. The analysis suggests that the east of the district and, to a lesser extent, the south of the district are characterised by higher average commuter carbon emissions, which could result in higher emissions from journeys to work.

Summary

3.16 It has been demonstrated that accessibility to services and some public transport links is generally better in the more urban parts of the District, in the north and west. Conversely, areas in the south and east which are more rural have generally less good access to services. While access to bus stops is good across the District, proximity to Metro stations is better in the north and central parts of South Tyneside. As a result, emissions from commuting are generally lower in those areas. The divide between urban and more rural areas is less pronounced in relation to access to open space, however, which is generally good throughout the District.

Local Plan Carbon Analysis April 2021

Figure 3.9: total emissions associated with journeys to work

Local Plan Carbon Analysis April 2021

Figure 3.10: average emissions per commuter associated with journeys to work

Local Plan Carbon Analysis April 2021

Figure 3.11: accessibility to railway stations and average emissions per commuter

LUC I 21

Chapter 4 Spatial options – carbon assessment

4.1 Preparation of the South Tyneside Local Plan initially involved consideration of seven spatial options – four for residential development and three for employment land. A fifth option for residential development has since been identified by South Tyneside Council.

Spatial options for residential development
Urban only / Sustainable Urban growth
Neighbouring authorities
Single large Green Belt release (5 areas of search)
Multiple, small Green Belt releases
Sustainable Urban Area Growth + large scale Green Belt release + additional small Green Belt site releases
Spatial options for employment land
Urban only
Neighbouring authorities
Strategic employment Green Belt release

4.2 Five areas of search were identified for the Spatial Option for residential development which is based on a single, large Green Belt release. Their broad locations are set out in **Figure 4.1**⁴ overleaf.

Figure 4.1: Green Belt Areas of Search

4.3 With the exception of the fifth residential spatial option (which represents a combination of elements from other options), each of the spatial options was assessed against a suite of criteria relating to their likely carbon emissions and the potential impact on carbon sequestration, as detailed in **Table 4.1** at the end of this chapter. The assessment was informed by the baseline analysis of accessibility to services and transport, and the analysis of journey to work emissions. Areas of particular uncertainty were also identified, particularly with respect to the option of accommodating development in neighbouring authority areas.

4.4 The results of the assessment are set out in **Table 4.1**. Key findings for the residential options include:

- The residential option based on urban only development generally performs better in terms of accessibility to local services and public transport. However, the analysis of emissions associated with commuting patterns suggested considerable variation between urban areas. In the east (e.g. South Shields and Whitburn) and south (e.g. Cleadon and East and West Boldon) settlements are characterised by higher average emissions, indicating longer commuter journeys and greater reliance on the car. There are also variations within the northern part of the district, with parts of Hebburn, Jarrow and High Shields having higher average emissions than the central around Simonside and Biddick Hall. Commuting patterns in some northern and western areas may be influenced by proximity to Newcastle and to major road infrastructure (Tyne Tunnel and the A194). These variations suggest a blanket 'urban only' option could result in development in locations currently characterised by higher levels of emission from commuting activity. This spatial option is likely to have lower impacts on existing carbon sequestered in soils and vegetation and provide moderate potential for property-scale renewables. Unless large sites are brought forward, there is likely to be limited scope for district heating schemes.
- The option of accommodating residential development in neighbouring authority areas presents considerable uncertainty in terms of carbon emissions. This reflects a lack of information about the location of development relative to services, transport and commuting patterns, and uncertainty about the plan policies relating to such development.
- The option of a single large Green Belt release, if properly designed, could result in development with good accessibility to local services and public transport. Location is likely to be critical in terms of emissions associated with commuting activity, with two of the areas of search characterised by higher average journey to

work emissions (reflecting longer journeys and/or car dependency) and low accessibility to Metro stations (Areas of Search 1 and 5), and two with areas of medium or lower average emissions and better access to Metro stations (Areas of Search 2 and 3). Area of Search 3 also has good access to the main road network (A19, A194 and A184) which could result in more people choosing to travel by car, despite proximity to the Metro network. Green Belt sites are likely to result in greater impacts on existing carbon sequestration but also offer opportunities for new planting. Large developments could offer potential for district heating schemes and walking and cycling infrastructure, all of which could help reduce emissions.

- The option of multiple, small residential Green Belt releases performs relatively poorly in terms of likely carbon emissions. Without clear locational policies, it is possible that development will take place in locations remote from local services and public transport links (particularly rail) and that journeys to work will be relatively long and/or dependent on car use. Smaller developments mean lower potential for district heating schemes and the creation of new walking and cycling infrastructure. Multiple small sites are less likely to make efficient use of land, potentially increasing the impact on carbon sequestered in soils and vegetation with fewer opportunities for significant new planting.
- A hybrid option based on a combination of urban sites, a larger Green Belt release and a number of smaller Green Belt sites could have a mix of positive or negative effects depending on the combination of locations identified for development. From the perspective of potential commuter emissions, the most favourable combination would comprise urban development in the central/northern parts of the district close to Metro stations together with Green Belt releases north of Boldon. Cleadon and Whiteleas. Green Belt release south of Fellgate has potential in terms of access to the Metro network but is also closer to the main road network which could make it more likely people would travel by car. As noted previously, a combination based on urban and rural sites predominantly in the east and south of the district would be likely to result in higher average commuter emissions.

Table 4.1: Carbon audit - initial high-level review of spatial options

	Transport				Soils and vegetation		District Heating network	, renewables potential	Buildings	Waste generation and management
	Car	Rail/Metro	Bus	Walking / cycling	Soil carbon lost	Vegetation lost / gained	Integrated renewables	Potential for DHN	Energy performance, embodied carbon	Domestic and commercial waste
Residential										
Urban only / Sustainable Urban growth	Lowest car use – shorter distances, access to alt modes	Higher rail/Metro use likely – good access to services	Higher bus use likely – good access to services	Higher walking and cycling likely – shorter distances	Lowest likely loss of soil carbon – potential reuse of	Low loss, some opportunity for planting on	Medium – depending on other plan policies	Low unless large urban sites identified	Depends on other plan policies	Few opportunities for integrated waste management
	Complex commuting path Higher emissions H Lower emissions – I	erns: ebburn, Jarrow, Monkton, Primrose, Brockley Mains,	Tyne Dock Biddick Hall, Horsely Hill		densification	brownfield sites				
Neighbouring authorities	Medium – depending on location of development and workplaces within ST. High uncertainty	Medium – depending on location of development and workplaces within ST. High uncertainty	Medium – low – depending on location of development and workplaces within ST. High uncertainty	Low – likely to entail longer distances to workplaces within ST depending on location of development	Unknown – depends on nature of sites	Unknown loss, some opportunity for planting, outside STC control	Medium – depending on other plan policies, outside STC control	Unknown – depends on scale of sites, outside STC control	Depends on other plan policies, outside STC control	Unknown – depends on scale of sites, outside STC control
Single large GB release	Medium car use – moderate distance but potential to locate close to, or provide new PT	Low-high depending on location	Low-high depending on location and requirement to provide high quality bus service	Low – medium – likely to entail longer distances to workplaces within ST depending on location of development	Medium – high – greenfield site likely, though single site could make efficient use of land	Medium to high loss possible, medium to high potential to provide new planting	Medium-high – depending on other plan policies and requirements imposed on developer	High - depending on other plan policies and requirements imposed on developer	Medium - high - depending on other plan policies and requirements imposed on developer	Opportunity for integrated waste management
GB AoS 1	Census data suggest	t higher mean emission	s per journey to work			associated with				
GB AoS 2	Census data suggest	t lower mean emissions	per journey to work			aovolopmont				
GB AoS 3	Census data suggest	lower mean emissions	per journey to work							
GB AoS 4	Census data suggest	t medium mean emissic	ons per journey to work							
GB AoS 5	Census data suggest	t higher mean emission	s per journey to work	T						
GB AoS 5 Multiple, small GB releases d lo F	High car use, depending on location, destination and availability of PT	Low – high depending on location, though – relatively few sites likely to be accessible by rail / Metro	Medium – most sites likely to be accessible by bus though some likely to be remote from employment and other trip destinations	Low – most sites likely to be remote from employment and other trip destinations	Medium-high – multiple small developments likely to make less efficient use of land	Medium to high loss possible, low - medium potential to provide new planting associated with development – easiest on larger	Medium – depending on other plan policies	Low-medium – there may be potential for some of the larger sites depending on other plan policies and requirements imposed on developer	Depends on other plan policies	Few opportunities for integrated waste management
	Existing commuting patte and east of the district. L Boldon, Cleadon and Wh	rns suggest high or mediu ower emissions in GB loca iteleas).	m emissions in GB locatio ations closer to existing se	ons particularly in the south ttlements (e.g. north of		SITES				

April 2021

	Transport				Soils and vegetation		District Heating network, renewables potential		Buildings	Waste generation and management
	Car	Rail/Metro	Bus	Walking / cycling	Soil carbon lost	Vegetation lost / gained	Integrated renewables	Potential for DHN	Energy performance, embodied carbon	Domestic and commercial waste
Employment land										
Urban only	Lowest car use possible depending on location – most likely to be accessible by alternative modes. Some urban areas with poorer public transport access and higher car dependency	Highest rail/Metro use possible – most likely to be accessible by rail or Metro. Some urban areas with poorer public transport access and higher car dependency	Highest bus use – most likely to be accessible by bus services	Highest walk and cycling – most likely to be accessible on foot or by bike	Lowest likely loss of soil carbon – potential reuse of brownfield sites	Low loss, low to medium opportunities for new planting	Medium – depending on other plan policies	Potential source of waste heat or anchor heat demand for DHN	Depends on other plan policies	Fewer opportunities for integrated waste management
Neighbouring authorities	Medium – depending on location of development and residential trip origins within ST. High uncertainty	Medium – depending on location of development and residential trip origins within ST. High uncertainty	Medium – low – depending on location of development and residential trip origins within ST. High uncertainty	Low – likely to entail longer distances from residential trip origins within ST depending on location of development	Unknown – depends on nature of sites	Unknown loss, some opportunity for planting, outside STC control	Medium – depending on other plan policies, outside STC control	Unknown – depends on scale and location of sites, outside STC control	Depends on other plan policies, outside STC control	Unknown – depends on scale of sites, outside STC control
Strategic employment GB release	Medium car use – moderate distance but potential to locate close to, or provide new, PT	Low-high depending on location	Low-high depending on location and requirement to provide high quality bus service	Low – medium – likely to entail longer journeys from homes within ST depending on location of development	Medium – high – greenfield site likely, though single site could make efficient use of land	Medium to high loss possible, medium potential to provide new planting associated with development	Medium-high – depending on other plan policies and requirements imposed on developer	Potential source of waste heat or anchor heat demand for DHN depending on location, plan policies and requirements imposed on developer	Depends on other plan policies	Opportunity for integrated waste management

- 4.5 Key findings for the employment land options include:
 - The employment land option based on urban-only development is likely to result in development that is close to existing population and accessible on foot, by bike or by public transport. While it is impossible to predict the location of employees' trip origins and the mode of transport they would use, urban locations would offer the greatest potential for lower emissions associated with people's journeys to work. There are, however, a number of urban areas remote from the Metro network and where it is more likely that journeys to work would be undertaken by private car. Urban development is likely to result in lower impacts on carbon sequestered in soils and vegetation. Renewable energy and district heating potential is largely a function of size rather than location, though there could be greater scope to use waste heat from industrial processes in urban rather than rural locations.
 - The option of accommodating employment development in neighbouring authority areas presents considerable uncertainty in terms of carbon emissions. This reflects a lack of information about the location of development relative to transport and commuting patterns, and uncertainty about the plan policies relating to such development.
 - The option of a strategic Green Belt release to accommodate employment development could result in higher carbon emissions. In part this would depend on the proximity of the release to the existing urban area and public transport provision. Again, it is impossible to predict the location of employees' trip origins and their mode of transport, but it is likely that a Green Belt location would result in longer journeys to work and/or greater car dependency. Sites closer to the Metro network are more likely to have lower transport emissions, all other things being equal. Similarly, sites closer to the main road network are likely to result in a larger proportion of employees travelling to work by car. Larger sites could impact on existing carbon sequestered in soils and vegetation, but would present opportunities for new planting, the installation of renewable energy systems and the potential for a district heating energy source.

5.1 This section of the report sets out the findings of the carbon assessment that has been carried out in relation to the reasonable alternative options for site allocations to be included in the Local Plan.

Accessibility to local services

5.2 **Figure 5.1** shows the Reasonable Alternative Sites superimposed on the map of variations in accessibility to GP surgeries and health centres across South Tyneside. It shows poorer access for reasonable alternative sites in the following areas:

- In the west of the district, to the south of Fellgate and west of West Boldon.
- In the central, southern part of the district, to the east of West Boldon, south of Cleadon Park and west of Whitburn.
- In the east of the district between Whitburn and Marsden.

5.3 **Figure 5.2** shows the Reasonable Alternative Sites superimposed on the map of variations in accessibility to local centres across South Tyneside. It shows that most reasonable alternatives lie more than 800m from town centres in Hebburn, Jarrow and South Shields and would therefore be more dependent on bus travel and car access.

5.4 **Figure 5.3** shows the Reasonable Alternative Sites superimposed on the map of variations in accessibility to open spaces and sports centres across South Tyneside. It shows that most reasonable alternative sites lie within 550m of open space. A small number lie partially or fully between 551 and 1,200m or more than 1,200m from open space, most notably in the south western corner of the district. As noted previously, it is possible that new development would include provision of additional open space.

5.5 **Figure 5.4** combines data from **Figures 5.1 to 5.3** to provide an overview of the Reasonable Alternative Sites' accessibility to local services. It shows poorer access for reasonable alternative sites in the following areas:

In the west of the district, to the south of Fellgate and west of West Boldon.

Chapter 5 Reasonable alternative site allocation options – carbon assessment Local Plan Carbon Analysis April 2021

- In the central, southern part of the district, to the east of West Boldon, south of Cleadon Park and west of Whitburn.
- In the east of the district between Whitburn and Marsden.

5.6 Sites closest to existing town centres perform better against this combined measure, reflecting the potential to access these public facilities on foot.

5.7 Much of the existing urban area has moderate accessibility. Built up areas with poorer access include parts of Whiteleas, East Boldon and Cleadon.

Accessibility to public transport and cycle infrastructure

5.8 **Figure 5.5** shows the Reasonable Alternative Sites superimposed on the map of variations in accessibility to Metro stations across South Tyneside. As would be expected, reasonable alternatives closest to Metro stations perform best, though most of the existing urban area has moderate accessibility. Exceptions include Cleadon Park, Marsden and Whitburn. Rural areas in the east and west of the district also have poorer access to Metro stations.

5.9 **Figure 5.6** shows the Reasonable Alternative Sites superimposed on the map of variations in accessibility to bus stops across South Tyneside. It shows that most reasonable alternatives have good or good-moderate access to bus stops. The only exceptions are in the south west of the district where two sites include areas that are more than 1,000m from a bus stop. Development of sites could of course include additional bus services to improve accessibility.

5.10 **Figure 5.7** shows the Reasonable Alternative Sites superimposed on the map of variations in accessibility to cycle paths across South Tyneside. It shows that a significant number of reasonable alternative sites lie in areas at least 800m from cycling infrastructure. New development could support investment in cycling provision.

5.11 **Figure 5.8** combines data from **Figures 5.5 to 5.7** to provide an overview of the Reasonable Alternative Sites' accessibility to low carbon transport. It shows that reasonable alternatives with the best access to low carbon transport are found in more urban locations closer to cycling infrastructure and Metro stations. Areas with lower accessibility include much of the southern part of the district and the east of the district, including Whitburn and Cleadon Park and part of Marsden.

Local Plan Carbon Analysis April 2021

Figure 5.1: Accessibility to GP surgeries and health centres across South Tyneside

Local Plan Carbon Analysis April 2021

Figure 5.2: Accessibility to local centres across South Tyneside

Local Plan Carbon Analysis April 2021

Figure 5.3: Accessibility to open spaces and sports centres across South Tyneside

tains Ordnance Survey data @ Crown copyright and database right 202

Local Plan Carbon Analysis April 2021

South Tyneside: Sustainability and Climate Change Review South Tyneside Council TYNEMOUTH LUC Figure 5.4: Reasonable alternatives and overview of accessibility to local services South Tyneside boundary Reasonable alternative GP surgery/health centre + Town centre Open space Accessibility to local services WALLSEND Low average accessibility Moderate average accessibility High average accessibility Whitburn Bay 6 Map scale 1:40,000 @ A3 CB:Green_C EB:Green_C LUC 11074_01_031_Fig5-4_Accessibility_Local_Services 25/02/2021 Dource: OND, 5TC Contains Ordnance Survey data @ Crown copyright and database right 2021

Figure 5.4: Overview of accessibility to local services

Local Plan Carbon Analysis April 2021

Figure 5.5: Accessibility to railway stations across South Tyneside

Local Plan Carbon Analysis April 2021

Figure 5.6: Accessibility to bus stops across South Tyneside

ance Survey data @ Crown copyright and database right 2021

Local Plan Carbon Analysis April 2021

TYNEMOUTH, South Tyneside: Sustainability and Climate Change LUC Review South Tyneside Council Figure 5.7: Reasonable alternative and accessibility to footpaths/cycleways South Tyneside boundary Reasonable alternative - Footpath/cycleway a Prop Footpath/cycleway buffer <300m 301m - 800m WALLSEND >800m On e 0 Whitburn Bay 6 Map scale 1:40,000 @ A3 CB:Green_C EB:Green_C LUC 11074_01_034_Flg5-7_Accessibility_Footpath_Cyclepath_25/02/2021 Source: ON8, STC

Figure 5.7: Accessibility to cycle paths across South Tyneside

irdnance Survey data @ Crown copyright and database right 2021

Local Plan Carbon Analysis April 2021

Figure 5.8: Overview of accessibility to low carbon transport

rdnance Survey data © Crown copyright and dat

Chapter 5 Reasonable alternative site allocation options – carbon assessment Local Plan Carbon Analysis April 2021

Journeys to work

5.12 **Figure 5.9** shows the Reasonable Alternative Sites superimposed on the map of variations in the total emissions associated with journeys to work for each MSOA in South Tyneside. Variations are a product of the total number of commuters, the distances they travel and the modes used.

5.13 The map shows that reasonable alternative sites in the north east (South Shields), south east (Whitburn) lie in areas with high total commuting emissions. Areas including Cleadon and Hebburn also have moderate to high total emissions.

5.14 **Figure 5.10** shows the Reasonable Alternative Sites superimposed on the map of variations in the average emissions (i.e. per commuter) associated with journeys to work for each MSOA in South Tyneside. Variations reflect the average distance travelled by commuters and the transport mode. While subject to the provisos outlined in **Chapter 2**, this data provides an indication of the possible travel to work emissions that could result from development in different parts of South Tyneside.

5.15 The map shows highest per commuter emissions in the south and east of the district, reflecting longer distance commuting to Newcastle in particular. Sites in the central part of the district lie in areas with lower average commuter emissions, reflecting shorter distance journeys (e.g. to centres within South Tyneside) and, to a degree, reliance on public transport.

Journeys to work - actual and potential

5.16 **Figure 5.11** combines accessibility to railway stations with the journey to work data (average emissions per commuter) to identify those Reasonable Alternative Sites where there is good access to rail and lower commuter emissions and, conversely, those locations with poor access to rail and high commuter emissions).

5.17 The map shows that sites that perform least well against this measure are located in the south east, east and southern parts of the district. Sites in better performing areas tend to be located close to Metro stations and large parts of the existing urban areas.

Summary of Findings

5.18 The analysis in this chapter largely reflects the baseline analysis described in **Chapter 3**. Site options that have less good accessibility to services are generally located in the west of the district, to the south West Boldon; in the central, southern part of the district, to the east of West Boldon, south of Cleadon Park and west of Whitburn; and in the east of the district between Whitburn and Marsden.

5.19 In terms of access to town centres, most site options perform relatively poorly, as most of the options are located away from the centres of Jarrow, Hebburn and Inner South Shields.

5.20 Most of the reasonable alternative site options have good access to open space, reflecting the generally good access across the District.

5.21 In terms of accessibility to low carbon transport, most of the site options have good access to bus stops but the sites that are near to Metro stations perform best. This is reflected in the higher per commuter emissions in the south and east of the District where Metro stations are less accessible and where commuting distances to Newcastle are longer.

5.22 The findings of the carbon audit for individual site options can be found in **Appendix A**.

Local Plan Carbon Analysis April 2021

South Tyneside: Sustainability and Climate Change Review South Tyneside Council TYNEMOUTH, LUC Figure 5.9: Reasonable alternatives and total commuter CO2 emissions for MSOAs in South Tyneside South Tyneside boundary Reasonable alternative Total commuter CO2 emissions (kg) Pan m-<1500 1500 - 2000 2000 - 2500 ALLSEND 2500 - 3000 >3000 Vhitburn Bay 6 Map scale 1:40,000 @ A3 CB:Green_C EB:Green_C LUC 11074_D1_036_Fig5-9_TotalCO2_25/02/2021 Source: ONS ata @ Crown copyright and dat

Figure 5.9: Total emissions associated with journeys to work

Local Plan Carbon Analysis April 2021

Figure 5.10: Average emissions per commuter associated with journeys to work

ontains Ordnance Survey data @ Crown copyright and database right 2021

Local Plan Carbon Analysis April 2021

Figure 5.11: Accessibility to railway stations and average emissions per commuter

Contains Ordnance Survey data @ Crown copyright and database right 2021

Appendix A

Reasonable alternatives site options: carbon assessment

A.1 This appendix sets out the results of the carbon assessment for each of the reasonable alternative site allocation options.

A.2 Mean accessibility score provides a summary of accessibility across all analysed community facilities and transport infrastructure and range from 0 (worst) to 3 (best).

A.3 Weighted average commuter CO2 takes account of emission rates of neighbouring census output areas to smooth boundary effects. Average emissions are measured in kg per commuter journey, rounded to two decimal places.

A.4 Total score is based on a combination of mean accessibility and average commuter emissions and is placed on a scale from 0 (worst) to 3 (best).

	GP									
	surgeries/health	Town centres	Metro sitations	Bus stops	Cycle paths	Open space				
	centres									
	ng (ng p		a b	ng nce	ng ng	Mean	Weighted Average Weighted		
Site	Dista (m Rati	Dista Ratii	Dista	Dista Ratii	Dista Rati	Dista Rati	Accessibility Score	Commuter Co2 Average Commuter Group	Overall Score	Overall Rating
SBC002	803.7 Amber	4485.2 Red	1361.79 Amber	2.4 Green	335.0 Amber	0.0 Green	1.5	1.09 1	1.25	Amber
SBC003	1190.1 Amber	4294.6 Red	684.04 Green	1.8 Green	0.0 Green	45.7 Green	2.2	1.18 1	2.17	Green
SBC007	1438.6 Red	4927.5 Red	971.41 Amber	92.0 Green	170.0 Green	156.5 Green	1.7	1.09 1	1.33	Amber
SBC008	1052.7 Amber	4907.6 Red	488.82 Green	0.0 Green	565.4 Amber	0.0 Green	1.8	1.08 1	1.42	Amber
SBC009	2404.5 Red	5307.3 Red	13.53 Green	21.0 Green	65.1 Green	0.0 Green	2.0	1.09 1	1.50	Amber
SBC010	2172.2 Red	4816.7 Red	66.15 Green	0.0 Green	0.0 Green	31.8 Green	2.0	1.16 2	2.00	Amber
SBC016	667.2 Amber	4525.5 Red	1868.60 Amber	27.9 Green	1222.3 Red	52.8 Green	1.3	1.09 1	1.17	Amber
SBC017	850.7 Amber	4548.2 Red	1759.17 Amber	10.8 Green	737.8 Amber	12.9 Green	1.5	1.09 1	1.25	Amber
SBC018	905.4 Amber	4576.2 Red	1534.38 Amber	0.0 Green	511.3 Amber	11.5 Green	1.5	1.09 1	1.25	Amber
SBC021	166.8 Green	3155.5 Red	405.08 Green	4.6 Green	912.3 Red	0.0 Green	2.0	1.08 1	1.50	Amber
SBC023	30.4 Green	3500.8 Red	807.38 Amber	90.8 Green	1318.4 Red	0.0 Green	1.7	1.08 1	1.33	Amber
SBC024	94.3 Green	3531.6 Red	917.11 Amber	76.7 Green	1326.3 Red	0.0 Green	1.7	1.08 1	1.33	Amber
SBC025	174.6 Green	3509.6 Red	1000.35 Amber	9.3 Green	1204.1 Red	18.1 Green	1.7	1.08 1	1.33	Amber
SBC026	709.5 Amber	3400.1 Red	1181.95 Amber	367.8 Green	972.5 Red	336.9 Green	1.3	1.09 1	1.17	Amber
SBC027	592.3 Green	3129.4 Red	633.81 Green	58.0 Green	942.9 Red	49.6 Green	2.0	1.08 1	1.50	Amber
SBC028	600.7 Amber	4202.0 Red	1444.05 Amber	303.7 Green	875.0 Red	0.0 Green	1.3	1.08 1	1.17	Amber
SBC030	710.7 Amber	2961.6 Red	860.07 Amber	51.4 Green	603.0 Amber	129.6 Green	1.5	1.08 1	1.25	Amber
SBC034	629.8 Amber	3057.6 Red	699.06 Green	13.3 Green	783.8 Amber	0.0 Green	1.8	1.08 1	1.42	Amber
SBC035	626.6 Amber	3121.9 Red	660.72 Green	60.2 Green	894.0 Red	28.1 Green	1.7	1.08 1	1.33	Amber
SBC036	636.8 Amber	2842.2 Red	319.25 Green	0.1 Green	788.5 Amber	0.0 Green	1.8	1.08 1	1.42	Amber
SBC038	481.6 Green	3245.3 Red	690.79 Green	0.2 Green	1066.8 Red	141.4 Green	2.0	1.08 1	1.50	Amber
SBC040	50.7 Green	3907.7 Red	1335.74 Amber	41.7 Green	1530.4 Red	0.0 Green	1.7	1.08 1	1.33	Amber
SBC041	386.8 Green	3772.6 Red	1426.33 Amber	9.8 Green	1372.2 Red	83.0 Green	1.7	1.09 1	1.33	Amber
SBC042	140.1 Green	3572.4 Red	986.36 Amber	58.3 Green	1332.4 Red	0.0 Green	1.7	1.08 1	1.33	Amber
SBC043	574.0 Green	4176.7 Red	1419.47 Amber	296.6 Green	894.6 Red	20.6 Green	1.7	1.08 1	1.33	Amber
SBC048	2155.8 Red	4676.8 Red	492.11 Green	10.5 Green	363.2 Amber	160.3 Green	1.7	1.09 1	1.33	Amber
SBC051	1998.8 Red	5322.4 Red	1381.26 Amber	2.9 Green	1439.2 Red	159.6 Green	1.2	1.18 1	1.17	Amber
SBC052	999.5 Amber	3690.1 Red	1016.87 Amber	98.0 Green	712.7 Amber	0.0 Green	1.5	1.18 1	1.25	Amber
SBC053	1284.3 Red	3999.0 Red	1278.60 Amber	242.8 Green	1226.8 Red	348.9 Green	1.2	1.18 1	1.08	Amber
SBC054	1524.0 Red	4242.1 Red	1121.65 Amber	195.5 Green	1106.3 Red	288.0 Green	1.2	1.18 1	1.08	Amber
SBC055	1547.9 Red	4245.1 Red	1071.35 Amber	203.9 Green	1040.0 Red	346.4 Green	1.2	1.18 1	1.08	Amber
SBC056	1474.4 Red	4190.0 Red	1630.41 Amber	12.2 Green	1620.0 Red	146.3 Green	1.2	1.18 1	1.08	Amber
SBC057	1470.3 Red	4188.3 Red	1591.60 Amber	95.2 Green	1579.5 Red	266.5 Green	1.2	1.18 1	1.08	Amber
SBC058	1283.4 Red	4001.7 Red	1544.36 Amber	3.5 Green	1526.9 Red	165.0 Green	1.2	1.18 1	1.08	Amber
SBC059	1523.0 Red	4241.2 Red	1381.00 Amber	2.4 Green	1383.3 Red	62.1 Green	1.2	1.18 1	1.08	Amber
SBC060	1539.4 Red	4251.6 Red	1657.07 Amber	44.4 Green	1653.4 Red	141.9 Green	1.2	1.18 1	1.08	Amber
SBC061	1536.5 Red	4245.4 Red	1707.23 Amber	11.0 Green	1700.8 Red	142.2 Green	1.2	1.18 1	1.08	Amber
SBC062	1122.0 Amber	4243.5 Red	1729.90 Amber	0.0 Green	1753.8 Red	0.0 Green	1.3	1.18 1	1.17	Amber
SBC063	1762.3 Red	4416.5 Red	1758.28 Amber	175.7 Green	1778.3 Red	44.7 Green	1.2	1.18 1	1.08	Amber
SBC064	1849.2 Red	4731.7 Red	1752.35 Amber	121.1 Green	1787.4 Red	223.6 Green	1.2	1.18 1	1.08	Amber
SBC065	1227.3 Red	5324.1 Red	1778.45 Amber	11.8 Green	1845.9 Red	320.4 Green	1.2	1.18 1	1.08	Amber
SBC066	1767.0 Red	4946.3 Red	1597.96 Amber	1.9 Green	1633.8 Red	221.7 Green	1.2	1.18 1	1.08	Amber
SBC067	1526.9 Red	5160.9 Red	1630.16 Amber	7.3 Green	1688.6 Red	364.7 Green	1.2	1.18 1	1.08	Amber
SBC069	1595.6 Red	4285.2 Red	1796.15 Amber	135.6 Green	1800.8 Red	0.0 Green	1.2	1.18 1	1.08	Amber
SBC070	1493.5 Red	4136.4 Red	1963.54 Amber	318.8 Green	1971.6 Red	3.1 Green	1.2	1.18 1	1.08	Amber
SBC071	1879.6 Red	4586.4 Red	1617.30 Amber	77.9 Green	1631.5 Red	0.0 Green	1.2	1.18 1	1.08	Amber

	GP									
	surgeries/health	Town centres	Metro sitations	Bus stops	Cycle paths	Open space				
	ju a	ing Inc	l l l l l l l l l l l l l l l l l l l	ou bu	ju č	ju di	Mean	Weighted Average Weighted	nted	
Site	Tati (T	kati sta	la ti	tati sta	sta ľati	tati sta	Accessibility	Commuter Co2 Avera	age Overall Score Ove	erall Rating
	ö "	ä "	ä "	ā "	ā "	ā "	Score	Commute	er Group	
SBC072	2226.6 Red	4944.0 Red	1339.20 Amber	166.5 Green	1373.0 Red	0.0 Green	1.2	1.18	1 1.08 Ambe	er
SBC074	1934.1 Red	4618.6 Red	1004.78 Amber	61.7 Green	999.1 Red	438.4 Green	1.2	1.18	1 1.08 Ambe	er
SBC077	2257.3 Red	4801.4 Red	162.38 Green	3.2 Green	143.8 Green	167.7 Green	2.0	1.09	1.50 Ambe	er
SBC080	2005.9 Red	5495.4 Red	571.52 Green	164.1 Green	581.4 Amber	156.1 Green	1.7	1.09	1.33 Ambe	er
SBC081	2260.4 Red	5624.9 Red	408.35 Green	28.7 Green	445.8 Amber	88.1 Green	1.7	1.09	1 1.33 Ambe	er
SBC083	1981.4 Red	5564.1 Red	1101.91 Amber	579.1 Amber	737.4 Amber	371.1 Green	1.0	1.09	1 1.00 Red	
SBC084	2304.7 Red	5737.9 Red	550.11 Green	157.8 Green	598.7 Amber	150.2 Green	1.7	1.09	1 1.33 Ambe	er
SBC085	2454.6 Red	5675.9 Red	410.07 Green	13.4 Green	452.5 Amber	11.8 Green	1.7	1.09	1 1.33 Ambe	er
SBC086	2707.3 Red	5673.6 Red	405.93 Green	220.4 Green	491.5 Amber	0.0 Green	1.7	1.09	1 1.33 Ambe	er
SBC087	2434.2 Red	5591.4 Red	284.62 Green	4.0 Green	367.7 Amber	0.0 Green	1.7	1.09	1 1.33 Ambe	er
SBC088	2621.6 Red	5538.5 Red	239.92 Green	240.8 Green	326.9 Amber	0.0 Green	1.7	1.09	1 1.33 Ambe	er
SBC090	2542.7 Red	5174.1 Red	115.95 Green	68.4 Green	134.0 Green	130.7 Green	2.0	1.09	1 1.50 Ambe	er
SBC091	2136.5 Red	4666.1 Red	482.88 Green	86.9 Green	249.3 Green	11.8 Green	2.0	1.18	1 1.50 Ambe	er
SBC094	1256.7 Red	4826.1 Red	1341.44 Amber	134.2 Green	344.6 Amber	122.7 Green	1.3	1.09	1 1.17 Ambe	er
SBC095	1501.4 Red	4171.3 Red	652.34 Green	2.3 Green	0.0 Green	0.0 Green	2.0	1.18	1 1.50 Ambe	er
SBC096	1508.5 Red	4120.5 Red	1327.90 Amber	40.1 Green	4.9 Green	0.0 Green	1.7	1.18	1 1.33 Ambe	
SBC097	18/9.0 Red	4232.5 Red	984.59 Amber	87.9 Green	200.9 Green	0.0 Green	1.7	1.18	1 1.33 Ambe	er
SBC090	1005.7 Amber	3705.3 Red	1916 05 Amber	33.4 Green	1551.9 Red	91.0 Green	1.3	1.10	1 1.17 Ambe	:I
SBC100	016.2 Ambor	2611 4 Red	1820.95 Amber	2.0 Green	1799.0 Red	24.8 Groop	1.3	1.10	1 1.17 Ambo	er en
SBC100	1000 7 Ambor	3701 3 Pod	2051 21 Rod	2.0 Green	1923.0 Red	65.1 Groop	1.3	1.10	2 1.17 Ambo	r
SBC102	1301.0 Rod	5002 7 Rod	258/ 81 Red	66.5 Groon	1801.5 Red	440.5 Groon	1.2	1.17	2 1.17 Allide	;1
SBC102	/32.0 Green	/202 1 Red	1656 28 Amber	12.7 Green	1327.9 Red		1.0	1.09	1 1 33 Ambe	ar
SBC104	529.6 Green	4390.4 Red	1749 55 Amber	15.0 Green	1295.4 Red		1.7	1.03	1 1 33 Ambe	ar
SBC105	500.4 Green	4358 9 Red	1714 93 Amber	3.1 Green	1311.2 Red	0.0 Green	1.7	1.03	1 1 33 Ambe	ar
SBC106	618.0 Amber	4469.5 Red	1875.65 Amber	82.1 Green	1441 0 Red	63.2 Green	1.7	1.03	1 1 17 Ambe	er
SBC107	703 5 Amber	4560.9 Red	1968 50 Amber	94 1 Green	1419.9 Red	156 1 Green	1.0	1.00	1 1 17 Ambe	er
SBC109	984.0 Amber	4839 1 Red	2202.58 Red	0.0 Green	1319.0 Red	7.1 Green	1.2	1.07	1 1.08 Ambe	er
SBC110	1036.0 Amber	4900.5 Red	2173.74 Red	125.7 Green	1235.3 Red	28.8 Green	1.2	1.09	1 1.08 Ambe	r
SBC111	912.2 Amber	4760.8 Red	2019.69 Red	2.3 Green	1047.9 Red	0.4 Green	1.2	1.09	1 1.08 Ambe	er
SBC112	655.0 Amber	4436.7 Red	1718.27 Amber	44.6 Green	952.8 Red	67.5 Green	1.3	1.09	1 1.17 Ambe	er
SBC113	765.0 Amber	4463.6 Red	1719.63 Amber	36.9 Green	805.8 Red	0.0 Green	1.3	1.09	1 1.17 Ambe	er
SBC114	1043.4 Amber	4550.5 Red	1436.55 Amber	90.1 Green	408.6 Amber	49.7 Green	1.5	1.09	1 1.25 Ambe	er
SBC115	1267.3 Red	4961.5 Red	1284.43 Amber	352.8 Green	456.2 Amber	0.0 Green	1.3	1.09	1 1.17 Ambe	er
SBC116	670.4 Amber	3881.3 Red	1131.42 Amber	1.5 Green	381.5 Amber	0.0 Green	1.5	1.09	1 1.25 Ambe	er
SBC117	1038.3 Amber	4808.3 Red	1556.92 Amber	249.1 Green	630.0 Amber	0.0 Green	1.5	1.09	1 1.25 Ambe	er
SBC118	1269.2 Red	5066.7 Red	2552.49 Red	118.0 Green	1826.2 Red	537.9 Green	1.0	1.09	1 1.00 Red	
SBC119	1024.2 Amber	4887.5 Red	2249.75 Red	87.6 Green	1333.7 Red	137.4 Green	1.2	1.09	1 1.08 Ambe	er
SBC120	138.7 Green	3646.8 Red	905.60 Amber	3.6 Green	1091.8 Red	0.0 Green	1.7	1.08	1 1.33 Ambe	er
SBC121	817.1 Amber	4645.4 Red	1950.33 Amber	11.8 Green	996.6 Red	2.3 Green	1.3	1.09	1 1.17 Ambe	er
SBC122	2005.4 Red	4765.9 Red	1650.37 Amber	86.6 Green	1678.7 Red	191.8 Green	1.2	1.18	1 1.08 Ambe	er
SBC123	760.9 Amber	4625.3 Red	1992.20 Amber	4.8 Green	1180.1 Red	93.9 Green	1.3	1.09	1 1.17 Ambe	er
SBC126	626.9 Amber	4465.4 Red	1908.00 Amber	214.8 Green	1583.1 Red	189.6 Green	1.3	1.09	1 1.17 Ambe	er
SBC127	799.7 Amber	4418.9 Red	2041.34 Red	141.5 Green	1938.6 Red	0.0 Green	1.2	1.09	1 1.08 Ambe	er
SBC129	2518.8 Red	5178.3 Red	125.71 Green	59.1 Green	123.7 Green	136.7 Green	2.0	1.09	1 1.50 Ambe	er
SBC130	2512.9 Red	5206.8 Red	9.29 Green	108.3 Green	99.5 Green	23.1 Green	2.0	1.09	1 1.50 Ambe	er

	GP										
	surgeries/health	Town centres	Metro sitations	Bus stops	Cycle paths	Open space					
	ja di	ja pr		្ត្ត ឆ្ន	ja pa	ja pr	Mean	Weighted Average	Weighted		
Site	ati (m	atii		ati	ati	ati	Accessibility	Commuter Co2	Average	Overall Score	Overall Rating
	ä ^e	ä "	ë 👻	ë ^e	ä 👻	ä 📽	Score	C	Commuter Group		
SBC131	1316.0 Red	3860.0 Red	2427.01 Red	214.1 Green	1830.3 Red	103.8 Green	1.0	1.17	1	1.00	Red
BC9	572.4 Green	3676.0 Red	1449.35 Amber	191.7 Green	1253.3 Red	370.3 Green	1.7	1.08	1	1.33	Amber
SFG001	1778.3 Red	2372.4 Red	1283.86 Amber	8.1 Green	916.4 Red	408.2 Green	1.2	0.87	2	1.58	Amber
SFG002	2264.5 Red	2564.5 Red	1779.09 Amber	3.5 Green	1140.4 Red	636.1 Amber	0.8	0.87	2	1.42	Amber
SFG003	1489.6 Red	2707.6 Red	1077.08 Amber	0.0 Green	1275.3 Red	431.1 Green	1.2	0.87	2	1.58	Amber
SFG004	1671.0 Red	2316.9 Red	1174.80 Amber	17.8 Green	854.1 Red	345.5 Green	1.2	0.87	2	1.58	Amber
SFG005	1285.9 Red	2346.5 Red	834.19 Amber	10.0 Green	883.7 Red	343.1 Green	1.2	0.87	2	1.58	Amber
SFG006	1478.0 Red	2428.3 Red	1026.47 Amber	132.7 Green	966.7 Red	456.5 Green	1.2	0.87	2	1.58	Amber
SFG007	1549.8 Red	2602.8 Red	1098.89 Amber	290.5 Green	1151.8 Red	591.2 Amber	0.8	0.87	2	1.42	Amber
SFG008	1059.5 Amber	2759.0 Red	733.95 Green	6.2 Green	990.0 Red	0.0 Green	1.7	0.87	2	1.83	Amber
SFG009	1070.2 Amber	3076.4 Red	803.53 Amber	12.0 Green	978.7 Red	0.0 Green	1.3	0.87	2	1.67	Amber
SFG010	950.4 Amber	3063.8 Red	731.02 Green	0.3 Green	861.1 Red	0.0 Green	1.7	0.87	2	1.83	Amber
SFG011	72.7 Green	2382.1 Red	439.26 Green	87.3 Green	32.7 Green	43.3 Green	2.5	0.74	3	2.75	Green
SFG012	690.4 Amber	2777.5 Red	345.37 Green	142.3 Green	640.9 Amber	127.5 Green	1.8	0.87	2	1.92	Amber
SFG015	1312.9 Red	2269.1 Red	815.86 Amber	18.7 Green	831.6 Red	179.8 Green	1.2	0.87	2	1.58	Amber
SFG016	538.6 Green	2821.2 Red	817.34 Amber	200.3 Green	428.3 Amber	85.4 Green	1.8	0.87	2	1.92	Amber
SFG017	1040.2 Amber	2345.2 Red	542.77 Green	67.4 Green	991.6 Red	122.2 Green	1.7	0.87	2	1.83	Amber
SFG018	679.6 Amber	2517.9 Red	322.51 Green	133.4 Green	631.8 Amber	0.0 Green	1.8	0.87	2	1.92	Amber
SFG019	974.1 Amber	2393.9 Red	480.63 Green	117.0 Green	967.6 Red	47.1 Green	1.7	0.87	2	1.83	Amber
SFG020	1242.8 Red	2707.9 Red	787.03 Amber	97.1 Green	1208.2 Red	299.7 Green	1.2	0.87	2	1.58	Amber
SFG021	761.8 Amber	2943.1 Red	506.99 Green	49.6 Green	688.2 Amber	70.1 Green	1.8	0.87	2	1.92	Amber
SFG022	688.0 Amber	2821.0 Red	384.34 Green	27.7 Green	627.8 Amber	54.9 Green	1.8	0.87	2	1.92	Amber
SFG025	495.1 Green	2486.7 Red	59.45 Green	0.0 Green	469.9 Amber	7.1 Green	2.2	0.87	2	2.08	Green
SFG028	627.9 Amber	2917.1 Red	557.24 Green	37.5 Green	530.3 Amber	31.5 Green	1.8	0.87	2	1.92	Amber
SFG030	424.0 Green	2708.3 Red	418.89 Green	10.6 Green	336.0 Amber	122.0 Green	2.2	0.87	2	2.08	Green
SFG032	837.6 Amber	3123.3 Red	729.75 Green	152.7 Green	735.3 Amber	33.4 Green	1.8	0.87	2	1.92	Amber
SFG033	857.5 Amber	3169.8 Red	828.92 Amber	295.8 Green	748.8 Amber	71.1 Green	1.5	0.87	2	1.75	Amber
SFG034	837.3 Amber	3158.9 Red	876.58 Amber	343.2 Green	724.0 Amber	31.4 Green	1.5	0.87	2	1.75	Amber
SFG035	866.9 Amber	3188.0 Red	947.26 Amber	318.9 Green	751.7 Amber	113.0 Green	1.5	0.87	2	1.75	Amber
SFG036	1699.5 Red	1926.0 Red	1202.26 Amber	18.3 Green	491.8 Amber	13.9 Green	1.3	0.87	2	1.67	Amber
SFG037	1880.7 Red	1925.1 Red	1394.03 Amber	190.9 Green	491.1 Amber	13.4 Green	1.3	0.87	2	1.67	Amber
SFG038	1928.2 Red	2203.1 Red	1430.64 Amber	170.2 Green	770.8 Amber	274.9 Green	1.3	0.87	2	1.67	Amber
SFG040	2765.0 Red	2773.8 Red	2271.90 Red	85.0 Green	1414.0 Red	763.3 Amber	0.7	0.87	2	1.33	Amber
SFG041	1082.8 Amber	2069.4 Red	593.34 Green	4.6 Green	633.5 Amber	11.4 Green	1.8	0.87	2	1.92	Amber
SFG042	1464.8 Red	1991.1 Red	976.72 Amber	31.9 Green	528.2 Amber	16.7 Green	1.3	0.87	2	1.67	Amber
SFG043	17.7 Green	2325.9 Red	433.93 Green	33.3 Green	49.2 Green	64.0 Green	2.5	0.74	3	2.75	Green
SFG044	187.8 Green	2509.3 Red	465.73 Green	107.5 Green	79.7 Green	0.0 Green	2.5	0.87	2	2.25	Green
SFG045	228.9 Green	2493.3 Red	285.59 Green	233.5 Green	179.8 Green	8.1 Green	2.5	0.87	2	2.25	Green
SFG040	376.9 Green	2641.3 Red	340.55 Green	124.3 Green	303.0 Amber	37.0 Green	2.2	0.87	2	2.08	Green
SFG04/	227.8 Green	2545.9 Red	549.35 Green	3.4 Green	112.2 Green	67.5 Green	2.5	0.87	2	2.25	Green
5rG048	442.8 Green	1990.7 Red	343.48 Green	83.4 Green	372.0 Amber	0.0 Green	2.2	0.74	3	2.58	Green
5FGU53	486.5 Green	2384.0 Ked	14.55 Green	55.2 Green	507.3 Amber	0.0 Green	2.2	0.74	3	2.58	Green
SFG055		2241.4 Ked	227.00 Green	0.0 Green	2.1 Green	103.7 Green	2.5	0.74	3	2.75	Green
SFGU30		2387.8 Ked	237.00 Green	93.4 Green	2.0 Green		2.5	0.74	3	2.75	Ambor
SFGU5/	2007.1 Ked	3003.7 Ked	2182.85 Keu	114.4 Green	1627.4 Ked	993.1 Amber	0.7	0.87	2	1.33	Amber
SFG059	2516.8 Red	2945.6 Ked	2041.17 Ked	124.8 Green	1529.4 Red	968.1 Amper	0.7	0.87	2	1.33	Amper

	GP										
	surgeries/health	Town centres	Metro sitations	Bus stops	Cycle paths	Open space					
	centres				e) ele parise	open opere					
	ochires .										
			ల్లి రా		8 5	8 5	Mean		Weighted		
Site	ti a) al	ti, a	ti aŭ	Ei a	ti a	Ei a	Accessibility	Weighted Average	Average	Overall Score	Overall Rating
	Ra (I	Ra	Ra	Ra	Ra	Ra	Score	Commuter Co2	Commuter Group		g
SFG060	803.6 Amber	3671.8 Red	1315.67 Amber	3.0 Green	1235.3 Red	70.8 Green	1.3	0.87	2	1.67	Amber
SFG061	1068.9 Amber	3298.5 Red	863.02 Amber	138.5 Green	977.4 Red	0.0 Green	1.3	0.87	2	1.67	Amber
SFG062	803.6 Amber	3278.5 Red	1025.69 Amber	342.9 Green	844.0 Red	138.0 Green	1.3	0.87	2	1.67	Amber
SFG064	2298.6 Red	4030.2 Red	2189.50 Red	606.7 Amber	2413.8 Red	1249.5 Red	0.2	0.87	2	1.08	Amber
SFG066	2525.7 Red	3040.7 Red	2075.06 Red	186.6 Green	1665.1 Red	1030.0 Amber	0.7	0.86	2	1.33	Amber
SFG067	2443.4 Red	3303.3 Red	1998.02 Amber	147.8 Green	1869.1 Red	1380.9 Red	0.7	0.87	2	1.33	Amber
SFG068	338.3 Green	2504.9 Red	724.02 Green	235.2 Green	259.4 Green	0.0 Green	2.5	0.83	2	2.25	Green
SFG071	2627.8 Red	4422.7 Red	2620.38 Red	1031.0 Red	2845.4 Red	1475.9 Red	0.0	0.87	2	1.00	Red
SFG072	805.2 Amber	2288.4 Red	730.25 Green	0.0 Green	825.0 Red	0.0 Green	1.7	0.87	2	1.83	Amber
SHB002	464.4 Green	483.4 Amber	517.79 Green	280.9 Green	0.0 Green	0.0 Green	2.7	0.82	3	2.83	Green
SHB004	150.5 Green	103.5 Green	286.36 Green	217.8 Green	443.3 Amber	230.7 Green	2.7	0.82	3	2.83	Green
SHB005	205.8 Green	34.3 Green	349.45 Green	123.8 Green	602.5 Amber	133.8 Green	2.7	0.82	3	2.83	Green
SHB006	256.2 Green	0.0 Green	384.53 Green	55.5 Green	767.6 Amber	125.7 Green	2.7	0.82	3	2.83	Green
SHB007	233.7 Green	0.0 Green	341.32 Green	10.9 Green	797.2 Amber	98.8 Green	2.7	0.82	3	2.83	Green
SHB011	63.2 Green	6.6 Green	125.15 Green	2.5 Green	724.2 Amber	0.0 Green	2.7	0.82	3	2.83	Green
SHB012	115.1 Green	200.6 Green	28.69 Green	0.3 Green	579.0 Amber	152.9 Green	2.7	0.82	3	2.67	Green
SHB013	573.7 Green	712.3 Amber	726.66 Green	1.2 Green	300.5 Amber	54.8 Green	2.3	0.76	3	2.67	Green
SHB014	366.8 Green	381.7 Amber	407.35 Green	219.3 Green	0.0 Green	0.0 Green	2.7	0.76	3	2.83	Green
SHB015	240.6 Green	393.2 Amber	399.47 Green	49.3 Green	9.8 Green	2.3 Green	2.7	0.76	3	2.83	Green
SHB016	191.4 Green	391.7 Amber	393.27 Green	87.2 Green	14.7 Green	0.3 Green	2.7	0.76	3	2.83	Green
SHB019	345.4 Green	98.8 Green	515.46 Green	118.1 Green	748.1 Amber	0.0 Green	2.7	1.00	1	1.83 .	Amber
SHB020	335.8 Green	275.9 Green	665.94 Green	210.7 Green	841.7 Red	11.5 Green	2.5	1.00	1	1.75	Amber
SHB021	736.9 Amber	477.3 Amber	894.95 Amber	292.2 Green	647.5 Amber	0.0 Green	1.7	1.00	2	1.83 .	Amber
SHB022	288.9 Green	711.6 Amber	799.45 Amber	84.0 Green	0.0 Green	0.0 Green	2.3	0.96	2	2.17	Green
SHB023	774.0 Amber	1017.1 Red	1427.37 Amber	33.2 Green	5.2 Green	114.5 Green	1.8	1.00	2	1.92	Amber
SHB024	1215.4 Red	1392.6 Red	1057.45 Amber	94.7 Green	69.7 Green	0.0 Green	1.7	1.00	2	1.83 .	Amber
SHB025	1188.6 Amber	1550.1 Red	711.74 Green	11.8 Green	188.5 Green	0.0 Green	2.2	1.00	2	2.08	Green
SHB026	1109.3 Amber	1174.7 Red	1333.56 Amber	37.3 Green	0.0 Green	0.0 Green	1.8	1.00	2	1.92	Amber
SHB027	1853.9 Red	1688.2 Red	1606.39 Amber	248.1 Green	273.7 Green	0.0 Green	1.7	1.00	2	1.83 .	Amber
SHB030	1611.2 Red	1349.9 Red	1755.58 Amber	22.5 Green	244.1 Green	0.0 Green	1.7	0.92	2	1.83 .	Amber
SHB032	1051.8 Amber	779.4 Amber	1191.42 Amber	188.2 Green	507.8 Amber	19.4 Green	1.7	1.00	2	1.83 .	Amber
SHB034	1625.4 Red	1422.2 Red	1773.65 Amber	15.3 Green	598.8 Amber	63.6 Green	1.3	1.00	3	1.33	Amber
SHB035	544.1 Green	582.3 Amber	446.29 Green	3.9 Green	666.2 Amber	14.9 Green	2.3	0.76	3	2.67	Green
SHB036	901.4 Amber	1304.5 Red	1030.54 Amber	87.6 Green	18.1 Green	0.0 Green	1.8	1.00	1	1.42	Amber
SHB038	91.3 Green	175.4 Green	42.03 Green	70.6 Green	503.5 Amber	146.1 Green	2.7	0.82	3	2.83	Green
SHB039	1638.1 Red	1388.8 Red	1800.48 Amber	30.2 Green	182.2 Green	12.8 Green	1.7	1.00	2	1.83	Amber
SHB040	728.7 Amber	814.0 Red	638.32 Green	219.9 Green	296.6 Green	36.9 Green	2.2	0.71	3	2.58	Green
SHB041	597.5 Green	684.4 Amber	508.74 Green	97.4 Green	303.1 Amber	0.0 Green	2.3	0.82	3	2.67	Green
SHB042	697.8 Amber	745.7 Amber	683.70 Green	377.5 Green	9.4 Green	5.6 Green	2.3	0.82	3	2.67	Green
SHB044	459.0 Green	491.5 Amber	456.36 Green	261.1 Green	0.0 Green	0.0 Green	2.7	0.82	2	2.33	Green
SHB045	444.0 Green	518.3 Amber	397.23 Green	155.6 Green	189.7 Green	0.0 Green	2.7	0.82	3	2.83	Green
SHB046	541.5 Green	701.1 Amber	711.98 Green	1.6 Green	302.3 Amber	99.7 Green	2.3	0.76	3	2.67	Green
SHB047	756.3 Amber	797.4 Amber	657.03 Green	150.0 Green	571.1 Amber	237.6 Green	2.0	0.81	3	2.50	Green
SHB048	798.7 Amber	833.2 Red	701.09 Green	194.2 Green	848.4 Red	213.8 Green	1.7	0.78	3	2.33	Green
SHB049	378.0 Green	471.8 Amber	300.77 Green	68.8 Green	436.9 Amber	70.8 Green	2.3	0.82	3	2.67	Green
SHB050	235.9 Green	823.2 Red	961.31 Amber	293.3 Green	391.7 Amber	2.4 Green	1.8	0.76	3	2.42	Green

	GP										
	surgeries/health	n Town centres	Metro sitations	Bus stops	Cycle paths	Open space					
									Martin and		
Site	ing (-	in g	i Bri	ing and	ing and	ing and	Mean	Weighted Average	weighted	Overall Seere	Overall Deting
	at (n	kat Rat	at Sta	Rat	at ista	ista Rat	Accessibility	Commuter Co2	Average	Overall Score	Overall Rating
							Score		commuter Group		
SHB051	281.2 Green	868.8 Red	882.09 Amber	328.4 Green	317.1 Amber	0.0 Green	1.8	0.76	3	2.42	Green
SHB052	1630.9 Red	1441.5 Red	1778.02 Amber	36.8 Green	529.9 Amber	127.7 Green	1.3	0.82	3	2.17	Green
SHB056	847.9 Ambe	910.8 Red	747.38 Green	192.3 Green	635.7 Amber	79.1 Green	1.8	0.80	3	2.42	Green
SHB062	389.5 Green	787.6 Amber	790.22 Amber	92.4 Green	408.2 Amber	303.4 Green	2.0	0.76	3	2.50	Green
SHB063	374.3 Green	730.4 Amber	831.91 Amber	104.0 Green	515.7 Amber	296.7 Green	2.0	0.76	3	2.50	Green
SHB064	373.3 Green	660.0 Amber	742.08 Green	98.5 Green	592.9 Amber	283.2 Green	2.3	0.76	3	2.67	Green
SHB067	351.9 Green	424.0 Amber	252.73 Green	35.4 Green	538.4 Amber	199.9 Green	2.3	0.82	3	2.67	Green
SHB068	292.4 Green	384.9 Amber	212.97 Green	0.0 Green	508.3 Amber	110.3 Green	2.3	0.82	3	2.67	Green
SHB069	421.4 Green	515.7 Amber	344.91 Green	109.7 Green	399.3 Amber	70.9 Green	2.3	0.82	3	2.67	Green
SHB070	471.2 Green	566.7 Amber	397.08 Green	149.1 Green	324.2 Amber	50.7 Green	2.3	0.82	3	2.67	Green
SHB071	233.3 Green	328.5 Amber	160.44 Green	11.6 Green	521.3 Amber	155.1 Green	2.3	0.82	3	2.67	Green
SHB073	97.8 Green	528.7 Amber	852.55 Amber	10.2 Green	584.5 Amper	8.7 Green	2.0	0.76	3	2.50	Green
SHB074	313.6 Green	349.6 Amber	345.29 Green	281.1 Green	196.8 Green	0.0 Green	2.7	0.82	3	2.83	Green
SHB075	146.0 Green	208.1 Green	140.64 Green	134.7 Green	332.6 Amber	104.9 Green	2.7	0.82	3	2.83	Green
	67.0 Green	Z3.7 Green	214.20 Green	137.5 Green	568.3 Amber	144.6 Green	2.7	0.82	2	2.33	Green
	548.7 Green	526.2 Amber	954.65 Amber	69.2 Green	389.3 Amber	0.0 Green	2.0	1.00	2	2.00	Amber
	385.7 Green	689.4 Amber	1078.89 Amber	6.1 Green	318.0 Amber	2.4 Green	2.0	1.00	2	2.00	Amber
	576.1 Green	830.0 Red	1240.50 Amber	32.6 Green	260.9 Green	45.9 Green	2.2	1.00	2	2.08	Green
	286.3 Green	813.5 Red	1226.82 Amber	0.1 Green	81.8 Green	13.9 Green	2.2	1.00	2	2.08	Green
	371.5 Green	758.9 Amber	1135.00 Amber	136.8 Green	444.5 Amber	9.6 Green	2.0	1.00	2	2.00	Amber
	392.0 Green	834.1 Red	1196.98 Amber	202.1 Green	403.1 Amber	33.1 Green	1.8	1.00	2	1.92	Amber
	939.2 AIIDE	102.5 Red	1204.29 Amber	2.0 Green	4.7 Green	0.0 Green	1.0	1.00	2	1.92	Amber
	1523.9 Red	12/3.0 Reu	1722.07 Amber	91.2 Green	107.2 Green	32.4 Green	1.7	1.00	2	1.03	Amber
	1090.7 Red	1323.3 Reu	1732.97 Amber	91.5 Green	273.2 Green	10.5 Green	1.7	1.00	2	1.03	Amber
	1401.3 Red	1301.3 Red	17 15.00 Amber	04.5 Green	12.9 Green	102.2 Groop	1.7	1.00	2	1.03	Amber
	1400.5 Red	1015 2 Red	1429.97 Ambor	94.5 Green	240.2 Ambor		1.7	1.00	2	1.03	Amber
	1272.3 Reu 1005.2 Ambo	1015.2 Red	1420.07 Amber	142.2 Green	260.0 Croop	0.0 Green	1.3	1.00	2	1.07	Amber
	1005.2 Ambo	1055.9 Red	1403.47 Amber	140.1 Green	269.9 Green	01.2 Groop	1.0	1.00	2	1.92	Amber
	901.3 AIIIDE	012.5 Red	1225 77 Ambor	162.0 Green	205.3 Green	64.2 Green	1.0	1.00	2	1.92	Amber
	022.4 Ambo	912.3 Reu	1422.05 Ambor	109.2 Groop	200.0 Ambor	120 5 Green	1.0	1.00	2	1.92	Amber
SHB102	1/51 3 Pod	1258 5 Pod	1508 80 Ambor	74.7 Groon	341.7 Ambor	76.2 Groon	1.3	0.81	2	2 17	Groop
	105 1 Groon	324.5 Ambor	310.20 Groop	52.6 Groon	67 Groop		1.3	0.01	3	2.17	Green
SHD100	10/11 7 Ambo	1307.7 Pod	072 75 Ambor		6.0 Groop		2.7	1.00	3	2.03	Ambor
SHB112	1186.5 Ambo	1900.8 Pod	731.13 Groop	163.6 Groon	564.1 Ambor	13.2 Groon	1.0	1.00	2	1.92	Ambor
SHB11/	1260.6 Red	1610.0 Red	881.34 Amber	1.8 Green	203.0 Green	24.0 Green	1.0	1.00	2	1.92	Amber
	777.5 Ambo	821.1 Pod	682.46 Groop	134.2 Groon	203.2 Ambor		1.7	0.78	2	2.42	Groop
SIS001	753.5 Ambe	195.9 Green	/09.16 Green	104.2 Green	24.2 Green		2.7	0.70	3	2.42	Green
SIS002	630 5 Ambo		187 04 Green	103.8 Green	64 1 Green	48.9 Green	2.7	0.90	2	2.33	Green
SIS002	425.5 Groop		28.97 Green	59.3 Green	106.4 Green	266.6 Green	2.7	0.90	2	2.33	Green
SIS003	423.3 Green		124.67 Green		61.9 Green	31.7 Green	3.0	0.90	2	2.50	Green
SIS004 SIS005	368.8 Groon		0.00 Green		1.9 Green	1/9 / Green	3.0	0.90	2	2.50	Green
515005	216 1 Groon		171 18 Green	10.1 Green	10.2 Groop	75.1 Green	3.0	1.02	1	2.00	Amber
SIS007	236.4 Green	0.0 Green	261.89 Green	8 9 Green	40.0 Green	117.2 Green	3.0	1.02	1	2.00	Amber
SIS008	353.8 Green	0.0 Green	54.35 Green	2.4 Green	7.6 Green	205.6 Green	3.0	n QN	2	2.00	Green
SIS009	256 0 Green	0.0 Green	159 79 Green	24.8 Green	7.6 Green	209.8 Green	3.0	0.90	2	2.50	Green
0.0000	200.0 01001	0.0 0.000		24.0 010011		200.0 010011	5.0	0.00	2	2.30	Cicon

	GP																
	surgeries/h	health	Town c		Metro sit	ations	Bus s	stops	Cycle p	aths	Open s	pace					
	8				e				8		8		Mean		Weighted		
	Distan (m)	Ratin	Distan	Ratin	Distan	Ratin	Distan	Ratin	Distan	Ratin	Distan	Ratin	Accessibility Score	Commuter Co2	Average Commuter Group	Overall Score	Overall Rating
SIS010	437.3 (Green	0.0	Green	173.73 (Green	93.9	Green	70.3 G	Breen	73.0	Green	3.0	0.9	0 2	2.50	Green
SIS011	120.0	Green	0.0	Green	290.45 (Green	0.0	Green	6.2 G	Breen	142.0	Green	3.0	0.9	0 2	2.50	Green
SIS012	128.3	Green	0.0	Green	475.74 (Green	0.8	Green	7.6 G	Green	79.4 (Green	3.0	0.9	0 2	2.50	Green
SIS013	234.6	Green	288.1	Green	619.12 (Green	37.7	Green	142.3 G	Freen	151.0	Green	3.0	0.9	0 2	2.50	Green
SIS014	698.1 <mark>/</mark>	Amber	485.3	8 Amber	1133.87 <mark>/</mark>	Amber	276.7	Green	146.5 G	Freen	35.6	Green	2.0	1.0	2 1	1.50	Amber
SIS015	572.3	Green	12.2	Green	430.33 (Green	2.3	Green	5.5 G	Green	51.8 (Green	3.0	0.9	0 2	2.50	Green
SIS017	196.1	Green	0.0	Green	258.12	Green	42.3	Green	174.2 G	Green	160.4 (Green	3.0	1.0	2 1	2.00	Amber
SIS018	77.7	Green	0.0	Green	365.14 (Green	120.5	Green	246.5 G	Green	3.1 (Green	3.0	1.0	2 1	2.00	Amber
SIS019	722.4	Amber	364.7	Amber	574.87 (Green	2.7	Green	50.5 G	Breen	0.0	Green	2.3	1.0	2 1	1.67	Amber
SIS020	831.6 <mark>/</mark>	Amber	533.7	Amber	766.55	Amber	128.0	Green	2.5 G	Freen	54.4 (Green	2.0	1.0	2 1	1.50	Amber
SIS021	755.3	Amber	0.1	Green	386.34	Green	71.7	Green	4.0 G	Freen	0.0	Green	2.7	0.9	0 2	2.33	Green
SIS022	665.2 A	Amber	18.1	Green	435.39	Green	36.4	Green	3.6 G	Freen	9.4 (Green	2.7	0.9	0 2	2.33	Green
SIS023	721.6	Amber	0.0	Green	329.06	Green	60.8	Green	21.0 G	Freen	8.2 (Green	2.7	0.9	0 2	2.33	Green
SIS028	532.1 (Green	0.0	Green	133.93 (Green	70.4	Green	113.7 G	Freen	46.8	Green	3.0	0.9	0 2	2.50	Green
SIS031	398.1 0	Green	0.0	Green	217.28	Green	22.8	Green	241.4 G	Freen	245.5	Green	3.0	1.0	2 1	2.00	Amber
SIS032	363.6 0	Green	64.1	Green	384.93	Green	206.5	Green	345.1 A	mber	92.5	Green	2.7	1.0	2 1	1.83	Amber
SIS036	66.6	Green	122.4	Green	627.76	Green	21.0	Green	0.0 G	ireen	1.8	Green	3.0	1.0	2 1	2.00	Amber
SIS037	307.2 (Green	248.2	Green	666.77 (Green	32.7	Green	130.1 G	ireen	71.1 (Green	3.0	1.0	2 1	2.00	Amber
SIS038	335.2 0	Jreen	117.8	Green	607.48	Sreen	27.9	Green	36.6 G	ireen	169.2	Green	3.0	0.9	0 2	2.50	Green
SIS041	643.3 A	Amber	430.7	Amber	1079.25	Amber	239.3	Green	94.0 G	ireen	35.6	Green	2.0	1.0	2 1	1.50	Amber
SIS044	637.6 F	Amber	0.0	Green	270.37	Freen	0.0	Green	41.5 G	ireen	0.0	Green	2.7	0.9	0 2	2.33	Green
ISS20 / E8	475.6	Green	222.0	Green	618.33	Freen	81.5	Green	99.6 G	ireen	149.1	Green	3.0	0.9	0 2	2.50	Green
ISS20 / ED2.4	402.0	sreen	190.2	Green	578.94	sreen	4.2	Green	58.0 G	breen	116.1	Green	3.0	0.9	0 2	2.50	Green
ISSZZ Cuetema Hausa Car	697.8 F	Amber	476.7	Amber	1122.03 F		298.4	Green	157.3 G	breen	37.3	Sreen	2.0	1.0	2 1	1.50	Amber
Customs House Car	700.7 4	Amber	155.8	Green	578.18	Sreen	96.1	Green	64.6 G	breen	45.0	Sreen	2.7	0.9		2.33	Green
CIVIC CIVIC	3/3.2	Green	0.0	Green	204.17	Sreen	100.0	Green	76.3 G	reen	130.4	Sreen	3.0	0.9		2.50	Green
SJAUUS S IAOOG	323.0	Sreen	0.0	Ambor	409.33		100.3	Green	203.2 G	reen	314.7	Sreen	3.0	0.0		2.50	Green
SJA000	452.0.0	Sreen	201.0	Amber	391.54 C		2.0	Green	239.2 G	reen	25.0	Sreen	2.7	0.0		2.33	Green
SJA007 S 14009	402.0	Intern	1090.7		572.60 (27.2	Green	295.1 0	mbor	20.9	Green	2.7	0.6	2 <u> </u>	2.33	Green
SJA000	522.1 C	Proop	1502 (Red	202.31		86.8	Green	764 6 A	mbor	87.5 (Groon	1.0	0.0	+ 3 1 3	2.42	Green
S 1A010	024.8 /	Ambor	2267 0	Pod	292.31	Proop	5.0	Groon	719.9 4	mbor	70	Groon	2.2	0.0	+ J	2.30	Green
S 14013	780 1 4	Amber	2207.3		386 57 (Green	2.0	Green	577.6 4	mber	7.9	Green	1.0	0.0	a 3	2.42	Green
S 14017	523.4 (Green	2245.3	7 Red	537 14 (Green	77.8	Green	333.3 Δ	mber	0.0	Green	2.2	0.0	0 3	2.42	Green
S IA015	473.7 (Green	2033.1	Red	814 19 4	mher	19.9	Green	216.8 G	reen	76.9 (Green	2.2	0.0	4 3	2.50	Green
S IA016	341 3 (Green	127.8	Green	491.09 (Green	13.2	Green	0.0 G	reen	0.0 0	Green	3.0	0.8	1 3	3.00	Green
S IA019	400.4 (Green	269.2	Green	574 60 (Green	3.1	Green	270.5 G	reen	120.3 (Green	3.0	0.8	2 2	2.50	Green
S.IA020	279.8 (Green	139 0	Green	437.58 (Green	58.5	Green	411 0 A	mber	217.7 (Green	2.7	0.0	2 2	2.30	Green
S IA021	526.4 (Green	1527 (Red	718 49 (Green	3.1	Green	18.0 G	Green	0.0 0	Green	2.7	0.0	4 3	2.00	Green
S.IA022	186.6 0	Green	197 5	Green	235.93	Green	138.6	Green	175.0 G	ireen	196.2 (Green	3.0	0.7	2 2	2.73	Green
SJA023	799.3 4	Amber	1298.2	Red	208.51	Green	82.0	Green	494 4 A	mber	0.0.0	Green	1.8	0.0	4 3	2.30	Green
S.IA024	819.2 4	Amber	533.7	Amber	637.95 (Green	157.7	Green	0.0 G	ireen	0.0 0	Green	2.3	0.0	3 3	2.42	Green
SJA026	16.4 (Green	0.0) Green	49.53 (Green	109.5	Green	288.8 G	Green	335.7 (Green	3.0	0.7	2 2	2.50	Green
SJA029	155.3 (Green	0.0	Green	321.10	Green	52.1	Green	32.0 G	Green	373.3	Green	3.0	0.8	2 2	2.50	Green
SJA030	495,4 0	Green	21.4	Green	605.09	Green	145.5	Green	420.5 A	mber	239.9 (Green	2.7	0.8	2 2	2.33	Green
SJA033	529.0 (Green	422.9	Amber	716.86	Green	100.0	Green	143.1 G	ireen	8.5 (Green	2.7	0.8	2 2	2.33	Green

	GP										
	surgeries/health	Town centres	Metro sitations	Bus stops	Cycle paths	Open space					
	Di C	ng ng		ja Br	ling ling	ng p	Mean	Weighted Average	Weighted		
Site	ati (m	ati		ati	ati	ati	Accessibility	Commuter Co2	Average	Overall Score	Overall Rating
	ä ^e	ä ^e	ă ²	ä "	ä 🖌	ä ^e	Score		Commuter Group		
SJA036	488.6 Green	352.3 Amber	668.83 Green	83.8 Green	193.0 Green	48.9 Green	2.7	0.82	2	2.33	Green
SJA040	551.2 Green	2258.2 Red	147.73 Green	25.2 Green	589.1 Amber	105.8 Green	2.2	0.74	3	2.58	Green
SJA041	900.6 Amber	1383.5 Red	879.35 Amber	33.7 Green	380.7 Amber	43.0 Green	1.5	0.74	3	2.25	Green
SJA045	854.3 Amber	1431.1 Red	978.29 Amber	8.3 Green	183.1 Green	57.4 Green	1.8	0.74	3	2.42	Green
SJA049	976.1 Amber	1190.1 Red	385.20 Green	6.3 Green	513.6 Amber	34.4 Green	1.8	0.64	3	2.42	Green
SJA050	686.1 Amber	1395.7 Red	237.91 Green	82.0 Green	586.8 Amber	0.0 Green	1.8	0.64	3	2.42	Green
SJA053	672.6 Amber	1835.5 Red	628.87 Green	82.0 Green	976.0 Red	0.0 Green	1.7	0.69	3	2.33	Green
SJA055	505.2 Green	1736.3 Red	526.83 Green	98.8 Green	859.6 Red	346.3 Green	2.0	0.64	3	2.50	Green
SJA056	1080.7 Amber	2519.2 Red	319.37 Green	8.1 Green	1068.8 Red	158.2 Green	1.7	0.69	3	2.33	Green
SJA057	624.3 Amber	2211.2 Red	446.65 Green	35.8 Green	411.9 Amber	0.0 Green	1.8	0.69	3	2.42	Green
SJA058	532.5 Green	1657.0 Red	475.83 Green	20.2 Green	788.8 Amber	404.8 Green	2.2	0.82	2	2.08	Green
SJA059	744.1 Amber	1352.7 Red	346.53 Green	47.9 Green	493.6 Amber	426.8 Green	1.8	0.82	2	1.92	Amber
SJA060	773.4 Amber	304.1 Amber	887.93 Amber	123.2 Green	102.0 Green	0.0 Green	2.0	0.82	2	2.00	Amber
SJA061	1176.2 Amber	1076.3 Red	526.75 Green	75.3 Green	390.2 Amber	83.3 Green	1.8	0.64	3	2.42	Green
SJA062	1187.5 Amber	919.9 Red	540.11 Green	252.5 Green	276.5 Green	64.6 Green	2.2	0.74	3	2.58	Green
SJA063	619.4 Amber	2162.1 Red	573.52 Green	37.0 Green	1191.8 Red	34.5 Green	1.7	0.69	3	2.33	Green
SJA064	1008.3 Amber	2576.1 Red	320.33 Green	92.3 Green	1163.1 Red	137.4 Green	1.7	0.61	3	2.33	Green
SJA065	1008.8 Amber	1587.8 Red	828.76 Amber	178.7 Green	475.0 Amber	182.0 Green	1.5	0.66	3	2.25	Green
SJA067	925.8 Amber	1559.3 Red	577.03 Green	1.9 Green	745.6 Amber	41.0 Green	1.8	0.64	3	2.42	Green
SJA068	878.0 Amber	1593.3 Red	558.90 Green	25.9 Green	786.7 Amber	83.4 Green	1.8	0.66	3	2.42	Green
SJA069	1137.8 Amber	817.7 Red	584.26 Green	289.1 Green	257.9 Green	40.8 Green	2.2	0.82	2	2.08	Green
SJA071	810.0 Amber	1239.2 Red	263.25 Green	8.9 Green	480.0 Amber	0.0 Green	1.8	0.64	3	2.42	Green
SJA072	943.7 Amber	976.4 Red	253.19 Green	91.1 Green	286.9 Green	0.0 Green	2.2	0.64	3	2.58	Green
SJA073	501.8 Green	1935.5 Red	461.60 Green	1.7 Green	1105.2 Red	90.7 Green	2.0	0.69	3	2.50	Green
SJA074	546.0 Green	1927.3 Red	505.93 Green	2.1 Green	1106.5 Red	82.4 Green	2.0	0.69	3	2.50	Green
SJA075	973.0 Amber	1762.5 Red	756.43 Amber	0.0 Green	675.1 Amber	0.0 Green	1.5	0.69	3	2.25	Green
SJA080	917.2 Amber	2163.3 Red	503.05 Green	0.0 Green	692.4 Amber	7.8 Green	1.8	0.69	3	2.42	Green
SJA081	1002.3 Amber	2204.1 Red	544.35 Green	90.2 Green	898.1 Red	200.0 Green	1.7	0.69	3	2.33	Green
SJA082	992.6 Amber	1886.0 Red	843.97 Amber	64.9 Green	796.2 Amber	18.8 Green	1.5	0.69	3	2.25	Green
SJA084	843.2 Amber	1873.0 Red	706.64 Green	33.9 Green	896.0 Red	18.1 Green	1.7	0.69	3	2.33	Green
SJA086	871.5 Amber	2251.4 Red	418.28 Green	24.7 Green	665.0 Amber	0.0 Green	1.8	0.69	3	2.42	Green
SJA087	893.9 Amber	2496.7 Red	270.19 Green	104.8 Green	129.6 Amber	118.6 Green	1.8	0.69	3	2.42	Green
SJA088	450.5 Green	1795.7 Red	826.69 Amber	10.8 Green	48.4 Green	25.4 Green	2.2	0.74	3	2.58	Green
	684.3 Arriber	1990 5 Dod	622.26 Croop	47.8 Green	Z1.Z Green	0.0 Green	2.0	0.82	2	2.00	Amber
E10 E10	972.1 Ambor	1009.5 Reu	023.30 Green	211 5 Green	104.3 AIIIDEI	2/4.4 Green	2.2	0.64	<u> </u>	2.30	Green
	664.1 Amber	1422.1 Red	015.95 Amber	211.5 Gleen	210 5 Amber	342.0 Green	1.0	0.04	<u>ງ</u>	2.20	Green
E1/ E12	1172 9 Ambor	917.4 Red	490.04 Groop	10.4 Green	519.5 AIIDEI	27.6 Green	1.0	0.04	3	2.20	Green
E13 E14	516 7 Croop	1787 1 Pod	409.94 Gittell	49.4 Green	023 7 Pod	288 0 Green	2.2	0.82	2	2.08	Green
CCS002	286.2 Croop	514.2 Amber	713 42 Groop	122.1 Croop	325.1 Keu		2.0	0.01	3	∠.0U	Green
SOS002	200.3 Gleen	567.9 Amber	1080.83 Ambor				2.3	0.85	2	2.17	Ambor
SOS003	1003 9 Amber		1500.03 Amber				2.0	1.02	1	1.00	Amber
SOS004 SOS007	280.6 Groop	1019.2 Red	054.62 Amber	62.3 Groop	163.3 Ambor	97.1 Groce	1.0	1.04	1	1.42	Ambor
SOS007	209.0 Green	1203 7 Red	71/ /8 Green		980 1 Red		1.0	CO.U	2	2.00	Amber
SOS009	463.2 Green	2088 1 Red	800 03 Amber	2.7 Green	830.6 Red	82.3 Green	2.0	0.93	2	2.00	Green
SOS014	464.4 Green	166.6 Green	621 64 Green	3.6 Green	5.6 Green	15.9 Green	3.0	0.74	3	2.55	Green
000014							5.0	0.09	2	2.30	Ciccii

	GP										
	surgeries/health	Town centres	Metro sitations	Bus stops	Cycle paths	Open space					
	centres										
			<u>ల</u> ి రా		లి ర ా	8 0	Mean		Weighted		
Site	ti a a	tin an	Ei B	ti an	ti a	ti a	Accessibility	Weighted Average	Average	Overall Score	Overall Rating
	list (I	Ra	Ra	Ra	Ra	Ra	Score	Commuter Co2	Commuter Group		
0000/5											2
SOS015	445.0 Green	266.6 Green	714.05 Green	3.7 Green	7.3 Green	0.0 Green	3.0	0.90	2	2.50	Green
SOS016	352.4 Green	338.8 Amber	668.11 Green	10.2 Green	42.8 Green	0.0 Green	2.7	0.90	2	2.33	Green
SOS017	448.8 Green	558.6 Amber	775.05 Amber	20.1 Green	5.0 Green	0.0 Green	2.3	0.90	2	2.17	Green
SOS018	351.4 Green	1233.1 Red	461.52 Green	0.0 Green	805.1 Red	0.0 Green	2.0	0.74	3	2.50	Green
SOS019	221.4 Green	1707.5 Red	257.72 Green	146.4 Green	588.1 Amber	0.0 Green	2.2	0.68	3	2.58	Green
SOS020	60.5 Green	1884.2 Red	210.41 Green	84.1 Green	494.6 Amber	79.0 Green	2.2	0.68	3	2.58	Green
SOS023	471.3 Green	2237.3 Red	476.61 Green	69.9 Green	505.9 Amber	8.7 Green	2.2	0.64	3	2.58	Green
SOS024	230.8 Green	2107.8 Red	266.33 Green	67.0 Green	355.5 Amber	0.0 Green	2.2	0.64	3	2.58	Green
SOS025	110.4 Green	2059.3 Red	156.61 Green	65.8 Green	719.6 Amber	107.3 Green	2.2	0.64	3	2.58	Green
SOS026	39.0 Green	2380.3 Red	372.20 Green	148.1 Green	36.6 Green	24.4 Green	2.5	0.68	3	2.75	Green
SOS027	309.2 Green	568.9 Amber	637.31 Green	39.5 Green	50.6 Green	15.2 Green	2.7	0.90	2	2.33	Green
SOS030	508.0 Green	2672.2 Red	836.09 Amber	184.0 Green	242.6 Green	0.0 Green	2.2	0.68	3	2.58	Green
SOS031	386.9 Green	2702.3 Red	734.22 Green	109.1 Green	12.4 Green	0.0 Green	2.5	0.68	3	2.75	Green
SOS033	506.8 Green	2811.6 Red	854.01 Amber	75.6 Green	11.6 Green	0.0 Green	2.2	0.68	3	2.58	Green
SOS034	639.4 Amber	2720.4 Red	625.32 Green	50.9 Green	472.1 Amber	29.7 Green	1.8	0.61	3	2.42	Green
SOS035	756.4 Amber	2278.3 Red	648.55 Green	1.5 Green	1121.2 Red	0.0 Green	1.7	0.67	3	2.33	Green
SOS036	1088.5 Amber	2751.0 Red	8.07 Green	60.5 Green	1018.2 Red	6.4 Green	1.7	0.61	3	2.33	Green
SOS038	369.7 Green	570.2 Amber	694.52 Green	9.4 Green	10.8 Green	14.9 Green	2.7	0.90	2	2.33	Green
SOS039	530.9 Green	767.4 Amber	865.62 Amber	20.2 Green	4.8 Green	0.0 Green	2.3	0.90	2	2.17	Green
SOS040	1369.5 Red	3415.1 Red	1073.98 Amber	1.3 Green	98.1 Green	0.0 Green	1.7	0.61	3	1.67	Amber
SOS041	1165.7 Amber	3459.6 Red	1032.30 Amber	5.9 Green	91.5 Green	0.0 Green	1.8	0.61	3	2.42	Green
SOS042	1440.8 Red	3668.2 Red	1692.48 Amber	111.5 Green	162.6 Green	133.0 Green	1.7	0.91	2	1.83	Amber
SOS043	1373.9 Red	3500.4 Red	1710.61 Amber	61.0 Green	392.0 Amber	183.0 Green	1.3	0.91	2	1.67	Amber
SOS044	1383.8 Red	3587.6 Red	1675.94 Amber	41.6 Green	509.0 Amber	302.0 Green	1.3	0.91	2	1.67	Amber
SOS045	950.6 Amber	3153.1 Red	1479.04 Amber	146.8 Green	652.5 Amber	0.0 Green	1.5	0.91	2	1.75	Amber
SOS046	847.8 Amber	3145.5 Red	1535.20 Amber	114.0 Green	747.6 Amber	0.0 Green	1.5	0.91	2	1.75	Amber
SOS047	413.8 Green	2672.0 Red	1039.43 Amber	0.0 Green	133.9 Green	0.0 Green	2.2	0.91	2	2.08	Green
SOS048	84.6 Green	2646.8 Red	1398.47 Amber	0.0 Green	1127.9 Red	0.0 Green	1.7	0.91	2	1.83	Amber
SOS049	487.0 Green	3116.6 Red	2249.28 Red	0.0 Green	1451.8 Red	0.0 Green	1.5	0.80	3	2.25	Green
SOS050	661.6 Amber	2897.1 Red	2461.63 Red	19.8 Green	1071.1 Red	319.2 Green	1.2	0.88	2	1.58	Amber
SOS051	690.7 Amber	3002.4 Red	2619.91 Red	6.5 Green	606.8 Amber	212.3 Green	1.3	0.88	2	1.67	Amber
SOS052	606.8 Amber	2970.3 Red	2739.29 Red	2.6 Green	541.5 Amber	180.8 Green	1.3	0.88	2	1.67	Amber
SOS054	188.2 Green	2519.9 Red	2327.56 Red	0.0 Green	302.9 Amber	0.0 Green	1.7	1.04	1	1.33	Amber
SOS055	376.6 Green	2677.8 Red	723.11 Green	146.4 Green	52.8 Green	16.6 Green	2.5	0.68	3	2.75	Green
SOS056	428.8 Green	1000.6 Red	725.17 Green	9.9 Green	165.7 Green	243.6 Green	2.5	0.79	3	2.75	Green
SOS057	728.1 Amber	3000.3 Red	2867.37 Red	1.9 Green	219.0 Green	20.3 Green	1.7	1.04	1	1.33	Amber
SOS058	435.4 Green	2311.0 Red	677.63 Green	46.6 Green	480.5 Amber	0.0 Green	2.2	0.68	3	2.58	Green
SOS059	540.1 Green	2258.2 Red	828.98 Amber	58.4 Green	703.2 Amber	112.4 Green	1.8	0.68	3	2.42	Green
SOS060	807.2 Amber	2644.7 Red	1072.36 Amber	193.2 Green	698.2 Amber	39.8 Green	1.5	0.68	3	2.25	Green
SOS061	620.2 Amber	2595.3 Red	1132.63 Amber	72.3 Green	778.5 Amber	22.2 Green	1.5	0.68	3	2.25	Green
SOS062	701.4 Amber	2992.8 Red	1048.54 Amber	6.2 Green	14.4 Green	0.0 Green	1.8	0.91	2	1.92	Amber
SOS063	635.0 Amber	2891.1 Red	828.72 Amber	1.7 Green	9.5 Green	0.0 Green	1.8	0.66	3	2.42	Green
SOS064	144.6 Green	540.8 Amber	401.94 Green	17.4 Green	340.1 Amber	79.5 Green	2.3	0.90	2	2.17	Green
SOS066	515.7 Green	1174.7 Red	761.02 Amber	149.4 Green	346.9 Amber	201.8 Green	1.8	0.90	2	1.92	Amber
SOS067	633.8 Amber	2699.6 Red	615.42 Green	102.8 Green	520.8 Amber	17.3 Green	1.8	0.61	3	2.42	Green
SOS069	156.9 Green	2168.3 Red	171.82 Green	4.6 Green	208.1 Green	183.0 Green	2.5	0.68	3	2.75	Green

	GP										
	surgeries/health	Town centres	Metro sitations	Bus stops	Cycle paths	Open space					
	centres				eyele paulo	open opuee					
	Contros									la de la constante de la const	
	8 .	8 5	e –	8 5	8 5	8 5	Mean		Weighted		
Site							Accessibility	Weighted Average	Average	Overall Score	Overall Rating
	a ist	a ist	Saf St	ad ist	a ist	Saf ist	Scoro	Commuter Co2	Commuter Group		
		<u> </u>		<u> </u>	─	<u> </u>	Score		Sommater Group		
SOS070	637.7 Amber	2190.3 Red	1601.12 Amber	140.1 Green	1384.6 Red	350.0 Green	1.3	0.93	2	1.67 /	Amber
SOS071	452.7 Green	1535.8 Red	453.42 Green	107.1 Green	813.9 Red	21.0 Green	2.0	0.90	2	2.00 /	Amber
SOS072	359.1 Green	2681.3 Red	649.48 Green	147.4 Green	234.3 Green	181.8 Green	2.5	0.61	3	2.75 (Green
SOS073	263.1 Green	380.7 Amber	383.82 Green	81.8 Green	313.1 Amber	0.0 Green	2.3	0.90	2	2.17 (Green
SOS074	259.7 Green	1118.9 Red	354.43 Green	116.0 Green	876.6 Red	38.7 Green	2.0	0.74	3	2.50	Green
SOS075	17.4 Green	692.7 Amber	227.31 Green	31.4 Green	558.1 Amber	0.0 Green	2.3	0.90	2	2.17 (Green
SOS076	668.7 Amber	1403.2 Red	574.46 Green	48.7 Green	694.1 Amber	86.7 Green	1.8	0.87	2	1.92 /	Amber
SOS077	838.0 Amber	1903.2 Red	1147.89 Amber	61.4 Green	1248.1 Red	31.5 Green	1.3	0.74	3	2.17 (Green
SOS078	838.3 Amber	1879.3 Red	1129.03 Amber	102.9 Green	1292.4 Red	0.0 Green	1.3	0.74	3	2.17 (Green
SOS079	708.1 Amber	1788.2 Red	994.23 Amber	28.0 Green	1145.2 Red	0.0 Green	1.3	0.74	3	2.17 (Green
SOS080	465.7 Green	1749.9 Red	228.32 Green	13.7 Green	540.9 Amber	222.8 Green	2.2	0.64	3	2.58	Green
SOS081	890.9 Amber	3178.8 Red	3034.51 Red	1.6 Green	199.9 Green	113.3 Green	1.7	0.88	2	1.83 /	Amber
SOS082	229.3 Green	2327.3 Red	226.17 Green	159.6 Green	391.1 Amber	0.0 Green	2.2	0.64	3	2.58	Green
SOS083	500.5 Green	2843.4 Red	839.17 Amber	104.7 Green	96.4 Green	56.9 Green	2.2	0.68	3	2.58	Green
SOS084	332.1 Green	2609.6 Red	674.37 Green	85.3 Green	100.1 Green	73.1 Green	2.5	0.68	3	2.75	Green
SOS085	341.5 Green	2245.2 Red	300.89 Green	68.6 Green	871.5 Red	289.8 Green	2.0	0.69	3	2.50	Green
SOS086	543.6 Green	2396.6 Red	502.34 Green	81.6 Green	945.1 Red	227.1 Green	2.0	0.68	3	2.50	Green
SOS087	529.7 Green	2573.7 Red	505.64 Green	146.0 Green	568.6 Amber	68.7 Green	2.2	0.64	3	2.58 (Green
SOS088	579.8 Green	2047.5 Red	535.85 Green	103.9 Green	1213.5 Red	0.0 Green	2.0	0.69	3	2.50 (Green
SOS090	1178.0 Amber	3483.2 Red	1407.01 Amber	134.8 Green	63.9 Green	54.6 Green	1.8	0.61	3	2.42 (Green
SOS091	1601 4 Red	3919.2 Red	1512.25 Amber	75.4 Green	53.7 Green	14.2 Green	1.7	0.61	3	2.33 (Green
SOS092	1756.6 Red	4027.5 Red	1445.10 Amber	203.3 Green	106.5 Green	96.2 Green	1.7	0.91	2	1.83	Amber
SOS093	1264.4 Red	3582.4 Red	1702 81 Amber	143.3 Green	685.4 Amber	285.9 Green	13	0.91	2	1 67	Amber
SOS094	1324 1 Red	3666 4 Red	1606.13 Amber	167.4 Green	713.9 Amber	204.5 Green	13	0.91	2	1 67	Amber
SOS096	471 1 Green	721 2 Amber	803.89 Amber	72.8 Green	6.8 Green	11.9 Green	2.3	0.90	2	2 17 (Green
SOS097	293.9 Green	347 9 Amber	466.68 Green	2.3 Green	201 5 Green	204.9 Green	2.0	0.90	2	2.17	Green
SOS098	44.1 Green	720 5 Amber	245 19 Green	81.0 Green	493.9 Amber	0.0 Green	2.7	0.90	2	2.00 0	Green
SOS101	510.0 Green	884.6 Red	1140 79 Amber	139.7 Green	453.5 Amber	2.3 Green	1.8	0.00	2	1 92	Amber
SOS102	466 1 Green	002.2 Red	1128 58 Amber	2.3 Green	426.8 Amber	3.5 Green	1.0	0.32	2	1.02	Amber
SOS104	1160 3 Amber	10/1 / Red	1572 21 Amber	87 / Green	1/6 1 Green		1.0	1.04	1	1.02	Amber
SOS105	550.7 Green	1537.5 Red	385.21 Green	71.8 Green	7/2.6 Amber	121.6 Green	22	0.64	3	2.58 (Green
SOS105	560.9 Groop	1401.6 Pod	470.61 Groop		840.7 Pod	156.2 Groon	2.2	0.04	3	2.00	Ambor
SOS100 SOS107	537.9 Green	1274.2 Pod	544.26 Groon	64.3 Groon	674.5 Ambor	37.5 Groon	2.0	0.00	2	2.00 /	Groop
SOS107 SOS108	620.8 Ambor	1274.2 Red	636.95 Groop	63.5 Groop	511.5 Ambor	96.5 Groon	2.2	0.90	2	2.00	Groon
SOS100		070.2 Red	652 10 Green	149.5 Green	245.4 Croop	100.2 Groop	1.0	0.80	<u>ວ</u>	2.42	Green
SOS109	221.0 Green	979.2 Red	202.10 Green	66.2 Groop	521.7 Ambor		2.0	0.90	2	2.23	Green
SOS110		902.4 Red	224.04 Green	101.5 Green	531.7 Amber	50.2 Green	2.2	0.90	2	2.00	Green
SOS111 SOS112	150.0 Green	1042.7 Red	324.04 Green	121.5 Green	STUU AITIDE	111 1 Green	2.2	0.90	2	2.06	Green
SUST12 SOS112	109.3 Green	1042.7 Keu	200.00 Green		000.0 Keu		2.0	0.74	3	2.50	Green
505113	799.6 Amber	1914.2 Ked		40.9 Green	1198.7 Ked	85.0 Green	1.3	0.74	3	2.17	Green
505114	641.2 Amber	1/46.8 Ked	919.22 Amper	50.5 Green	1095.6 Ked	0.0 Green	1.3	0.74	3	2.17	Green
505121	378.8 Green	2052.8 Red	1960.69 Amber	111.2 Green	352.1 Amber	358.8 Green	1.8	1.04	1	1.42	
505123	551.6 Green	1745.9 Red	326.06 Green	3.2 Green	538.4 Amber	212.5 Green	2.2	0.64	3	2.58	Green
505124	461.0 Green	1596.4 Red	369.11 Green	69.8 Green	742.6 Amber	93.6 Green	2.2	0.64	3	2.58	Green
SUS125	421.8 Green	1604.1 Red	409.78 Green	102.3 Green	776.9 Amber	29.1 Green	2.2	0.64	3	2.58 (Green
SUS128	273.7 Green	2272.9 Red	2168.97 Red	191.6 Green	279.3 Green	241.6 Green	2.0	1.04	1	1.50 /	Amber
SOS130	79.7 Green	2398.8 Red	2204.99 Red	10.7 Green	514.9 Amber	63.6 Green	1.7	1.04	1	1.33 /	Amber

	GP										
	surgeries/health	Town centres	Metro sitations	Bus stops	Cycle paths	Open space					
	centres										
	ခို စို	ရွိ ရွိ	မိ စ	ja g	ရွိ ရွိ	ရွိ ရွိ	Mean	Weighted Average	Weighted		
	ti ji ta	i ta	ti ta	ti ta	iti tar	tar tar	Accessibility	Commuter Co2	Average	Overall Score	Overall Rating
	Ra Ois	Ra	R, Dis	R ^a	R, Dis	R		Commuter Co2	ommuter Group		
SOS133	128 0 Groop	2244 5 Rod	1005 24 Ambor	13.2 Groop	668 2 Ambor	310 1 Groon	1.8	0.88	2	1.02	Ambor
SOS133	219 / Green	2232 2 Red	1031.53 Amber	88 1 Green	771 1 Amber	203.2 Green	1.0	0.00	2	1.92	Amber
SOS138	696.2 Amber	2868 3 Red	270/ 01 Red	82.9 Green	88 / Green		1.0	1.04	1	1.32	Amber
SOS139	566.9 Green	2740.2 Red	2656 94 Red	135.6 Green	168.6 Green	0.0 Green	2.0	1.04	1	1.00	Amber
SOS140	763.9 Amber	3074.8 Red	2000.04 Red	52 7 Green	324.3 Amber	75.3 Green	1.3	0.88	2	1.00	Amber
SOS142	228.9 Green	2208 5 Red	413.39 Green	136.6 Green	307 5 Amber	145.0 Green	22	0.68	3	2.58	Green
SOS143	141.4 Green	2260.7 Red	374.17 Green	96.2 Green	200.6 Green	171.2 Green	2.5	0.68	3	2.75	Green
SOS145	351.7 Green	1821.4 Red	641.10 Green	171.7 Green	785.5 Amber	0.0 Green	2.2	0.74	3	2.58	Green
SOS147	373.2 Green	1925.4 Red	678.95 Green	171.8 Green	775.6 Amber	0.0 Green	2.2	0.74	3	2.58	Green
SOS148	351.0 Green	1772.3 Red	627.95 Green	119.9 Green	810.5 Red	0.0 Green	2.0	0.74	3	2.50	Green
SOS150	527.7 Green	2429.4 Red	1211.20 Amber	141.3 Green	1055.2 Red	210.2 Green	1.7	0.74	3	2.33	Green
SOS151	530.1 Green	2620.6 Red	1294.26 Amber	2.0 Green	1028.0 Red	39.1 Green	1.7	0.74	3	2.33	Green
SOS152	620.2 Amber	2543.0 Red	1185.21 Amber	100.0 Green	943.0 Red	137.0 Green	1.3	0.74	3	2.17	Green
SOS153	688.8 Amber	2398.5 Red	1079.90 Amber	33.7 Green	914.7 Red	284.3 Green	1.3	0.74	3	2.17	Green
SOS156	448.3 Green	2580.6 Red	2173.18 Red	81.4 Green	1059.8 Red	535.6 Green	1.5	0.88	2	1.75	Amber
SOS157	420.2 Green	2570.1 Red	2172.16 Red	95.5 Green	1030.9 Red	506.8 Green	1.5	0.88	2	1.75	Amber
SOS158	310.0 Green	2524.9 Red	2171.51 Red	10.8 Green	921.1 Red	399.6 Green	1.5	0.88	2	1.75	Amber
SOS159	281.5 Green	2514.4 Red	2171.96 Red	9.7 Green	891.8 Red	370.6 Green	1.5	0.88	2	1.75	Amber
SOS161	444.3 Green	2801.9 Red	2483.70 Red	193.3 Green	649.7 Amber	198.1 Green	1.7	0.88	2	1.83	Amber
SOS162	475.3 Green	2800.3 Red	2453.76 Red	257.2 Green	908.4 Red	415.3 Green	1.5	0.88	2	1.75	Amber
SOS167	1372.1 Red	3685.3 Red	3515.72 Red	57.5 Green	140.4 Green	88.7 Green	1.5	1.18	1	1.25	Amber
SOS168	1414.4 Red	3712.5 Red	3559.58 Red	62.5 Green	70.6 Green	77.8 Green	1.5	1.18	1	1.25	Amber
SOS169	1353.2 Red	3640.6 Red	3498.61 Red	79.0 Green	61.9 Green	69.2 Green	1.5	1.18	1	1.25	Amber
SOS170	122.0 Green	2243.7 Red	215.67 Green	96.9 Green	133.2 Green	111.7 Green	2.5	0.68	3	2.75	Green
SOS171	115.4 Green	2326.2 Red	293.46 Green	189.5 Green	13.9 Green	8.6 Green	2.5	0.63	3	2.75	Green
SOS172	153.2 Green	2491.5 Red	499.68 Green	24.2 Green	0.0 Green	0.0 Green	2.5	0.68	3	2.75	Green
SOS173	338.9 Green	2684.5 Red	675.32 Green	14.5 Green	70.4 Green	9.1 Green	2.5	0.61	3	2.75	Green
SOS176	128.6 Green	2466.3 Red	446.93 Green	151.1 Green	19.2 Green	8.0 Green	2.5	0.61	3	2.75	Green
SOS179	430.8 Green	2364.6 Red	664.50 Green	72.3 Green	443.1 Amber	0.0 Green	2.2	0.68	3	2.58	Green
SOS180	565.0 Green	2497.5 Red	810.02 Amber	190.4 Green	494.6 Amber	0.0 Green	1.8	0.68	3	2.42	Green
SOS181	701.0 Amber	2618.1 Red	960.56 Amber	206.4 Green	546.5 Amber	48.5 Green	1.5	0.68	3	2.25	Green
SOS182	735.7 Amber	2692.0 Red	1025.18 Amber	240.6 Green	471.8 Amber	0.0 Green	1.5	0.68	3	2.25	Green
SOS183	631.8 Amber	2632.2 Red	910.19 Amber	264.3 Green	469.0 Amber	0.0 Green	1.5	0.68	3	2.25	Green
SOS184	298.3 Green	2241.4 Red	256.22 Green	90.7 Green	869.6 Red	357.6 Green	2.0	0.69	3	2.50	Green
SOS185	142.7 Green	2147.9 Red	103.51 Green	28.9 Green	810.4 Red	295.5 Green	2.0	0.64	3	2.50	Green
SOS188	364.4 Green	1874.3 Red	331.47 Green	26.1 Green	1008.8 Red	122.2 Green	2.0	0.67	3	2.50	Green
SOS189	349.6 Green	1946.3 Red	311.57 Green	100.1 Green	1083.5 Red	229.0 Green	2.0	0.64	3	2.50	Green
SOS190	273.9 Green	2281.1 Red	239.47 Green	50.8 Green	791.1 Amber	279.0 Green	2.2	0.69	3	2.58	Green
SOS194	833.9 Amber	3428.2 Red	2489.25 Red	210.0 Green	1904.4 Red	50.5 Green	1.2	0.80	3	2.08	Green
SOS196	1042.3 Amber	3289.2 Red	2767.69 Red	20.5 Green	1414.1 Red	0.0 Green	1.2	0.80	3	2.08	Green
SOS197	934.5 Amber	3146.2 Red	2672.67 Red	104.3 Green	1277.8 Red	137.1 Green	1.2	0.80	3	2.08	Green
SOS198	798.7 Amber	3036.9 Red	2589.42 Red	7.9 Green	1165.2 Red	243.9 Green	1.2	0.80	3	2.08	Green
SOS199	785.2 Amber	3058.6 Red	2634.11 Red	28.9 Green	1083.7 Red	339.6 Green	1.2	0.80	3	2.08	Green
SOS210	923.4 Amber	3349.0 Red	1792.41 Amber	3.5 Green	942.9 Red	10.5 Green	1.3	0.91	2	1.67	Amber
SOS212	1583.5 Red	3907.7 Red	1393.51 Amber	112.1 Green	552.8 Amber	161.8 Green	1.3	0.91	2	1.67	Amber
SOS221	1241.4 Red	3552.5 Red	3385.99 Red	15.4 Green	157.2 Green	95.1 Green	1.5	1.18	1	1.25	Amber

	GP										
	surgeries/health centres	Town centres	Metro sitations	Bus stops	Cycle paths	Open space					
	Distance (m) Rating	Distance Rating	Distance Rating	Distance Rating	Distance Rating	Distance Rating	Mean Accessibility Score	Weighted Average Commuter Co2	Weighted Average commuter Group	Overall Score	Overall Rating
SOS222	46.5 Green	782.6 Amber	393.79 Green	2.8 Green	636.2 Amber	42.4 Green	2.3	0.90	2	2.17	Green
OSS5	285.1 Green	418.0 Amber	484.57 Green	75.8 Green	275.9 Green	87.7 Green	2.7	0.90	2	2.33	Green
OSS12	509.4 Green	860.4 Red	1160.62 Amber	15.4 Green	282.5 Green	0.0 Green	2.2	1.04	1	1.58	Amber
OSS67	582.0 Green	571.9 Amber	897.81 Amber	12.0 Green	4.9 Green	23.7 Green	2.3	0.89	2	2.17	Green
OSS71	1240.7 Red	3228.4 Red	769.25 Amber	161.0 Green	699.3 Amber	0.0 Green	1.3	0.61	3	2.17	Green
SWH001	1091.9 Amber	3464.0 Red	3186.49 Red	79.5 Green	237.0 Green	0.0 Green	1.7	1.18	1	1.33	Amber
SWH002	1304.7 Red	3672.6 Red	3325.00 Red	0.0 Green	306.3 Amber	0.0 Green	1.2	1.18	1	1.08	Amber
SWH003	1373.0 Red	4234.8 Red	3366.29 Red	25.8 Green	535.7 Amber	0.0 Green	1.2	1.18	1	1.08	Amber
SWH004	1460.2 Red	4726.6 Red	3838.18 Red	80.7 Green	163.3 Green	0.0 Green	1.5	1.18	1	1.25	Amber
SWH006	899.1 Amber	4920.2 Red	3571.00 Red	4.6 Green	489.1 Amber	10.5 Green	1.3	1.18	1	1.17	Amber
SWH007	840.7 Amber	3965.1 Red	2848.87 Red	3.4 Green	526.1 Amber	0.0 Green	1.3	1.18	1	1.17	Amber
SWH008	691.2 Amber	5572.9 Red	3948.65 Red	217.2 Green	1004.7 Red	44.3 Green	1.2	1.18	1	1.08	Amber
SWH009	444.6 Green	5298.9 Red	3295.99 Red	2.3 Green	1265.1 Red	163.8 Green	1.5	1.18	1	1.50	Amber
SWH011	624.3 Amber	4860.8 Red	2411.50 Red	1.3 Green	1399.7 Red	138.2 Green	1.2	1.18	1	1.08	Amber
SWH012	517.9 Green	5254.3 Red	3138.14 Red	214.6 Green	1385.6 Red	352.6 Green	1.5	1.18	1	1.25	Amper
SWH013	637.4 Amber	5662.3 Red	2722.08 Red	216.7 Green	2072.5 Red	17.7 Green	1.2	1.18	1	1.08	Amber
SWH014	701.1 Ambor	3812.6 Red	3011.52 Red	7.0 Green	35.9 Green	0.0 Green	1.5	1.18	1	1.25	Amber
SWH015		5797.6 Reu	20/9.91 Red	209.5 Green	2252.0 Red		1.2	1.10	1	1.00	Amber
	423.0 Green	6412.1 Rod	2259 52 Red	2.0 Green	2173.1 Reu 2265.0 Red		1.0	1.10	1	1.20	Amber
SWH017 SWH018	683.6 Ambor	63/1 7 Pod	3065 88 Rod	186 1 Groop	2535.0 Red		1.0	1.10	1	1.20	Amber
SW1010 SW/H010	602.4 Ambor	6183.6 Pod	2040.46 Red	162.5 Groon	2353.9 Red	28.2 Groop	1.2	1.10	1	1.00	Ambor
SW/H020	731 9 Amber	6124 0 Red	2643.85 Red	210.0 Green	2437.3 Red	0.3 Green	1.2	1.10	1	1.00	Amber
SW/H021	924 3 Amber	5610.0 Red	2307 32 Red	11.4 Green	2297 4 Red	0.0 Green	1.2	1.10	1	1.00	Amber
SW/H022	829.0 Amber	5781 4 Red	1662 59 Amber	0.5 Green	1734 1 Red	77.6 Green	1.2	1 13	1	1.00	Amber
SWH023	640 7 Amber	6327.3 Red	2955.85 Red	8.9 Green	2556.6 Red	0.0 Green	1.0	1.10	1	1.08	Amber
SWH025	1248.6 Red	5132.6 Red	3971.06 Red	0.0 Green	567.0 Amber	0.0 Green	1.2	1.18	1	1.08	Amber
SWH026	1174.3 Amber	5214 7 Red	4008.24 Red	67.2 Green	618.8 Amber	0.0 Green	1.3	1.18	1	1.17	Amber
SWH027	1165.2 Amber	5215.2 Red	3934.77 Red	27.7 Green	694.1 Amber	70.9 Green	1.3	1.18	1	1.17	Amber
SWH028	1039.1 Amber	5599.6 Red	4259.27 Red	447.4 Green	875.0 Red	0.0 Green	1.2	1.18	1	1.08	Amber
SWH029	566.7 Green	5598.1 Red	3515.55 Red	38.8 Green	1406.7 Red	171.6 Green	1.5	1.18	1	1.25	Amber
SWH032	722.0 Amber	5619.1 Red	3864.03 Red	111.7 Green	1164.0 Red	322.0 Green	1.2	1.18	1	1.08	Amber
SWH036	434.3 Green	6341.3 Red	3337.44 Red	51.5 Green	2332.2 Red	37.5 Green	1.5	1.18	1	1.25	Amber
SWH038	466.8 Green	6328.3 Red	3285.86 Red	7.5 Green	2350.6 Red	35.9 Green	1.5	1.18	1	1.25	Amber
SWH040	579.0 Green	5945.4 Red	2951.96 Red	91.6 Green	2217.4 Red	18.4 Green	1.5	1.18	1	1.25	Amber
SWH048	467.2 Green	5319.6 Red	2578.31 Red	125.2 Green	1750.9 Red	19.1 Green	1.5	1.18	1	1.25	Amber
SWH049	792.4 Amber	5108.7 Red	3348.63 Red	48.1 Green	1029.7 Red	397.0 Green	1.2	1.18	1	1.08	Amber
WH14	393.3 Green	5758.4 Red	4020.20 Red	375.5 Green	1045.5 Red	0.0 Green	1.5	1.18	1	1.25	Amber
Arthur St Allotments	1486.5 Red	4876.8 Red	3984.72 Red	36.6 Green	317.2 Amber	0.0 Green	1.2	1.18	1	1.08	Amber